top
CONTENTS§ 1. Introduction.................................................................................................... 5§ 2. Basic development............................................................................................... 8§ 3. Some elementarily equivalent spaces............................................................. 11§ 4. Elementary characterizations of some familiar spaces................................ 13§ 5. First order properties of C(X).............................................................................. 16§ 6. ℒ(X) and C(X) compared..................................................................................... 26§ 7. Some results on undecidability.......................................................................... 28§ 8. The class of topology lattices............................................................................. 32§ 9. Some bounds on the Löwenheim number for topology lattices.................. 33§10. Open questions................................................................................................... 36References.................................................................................................................... 39
C.W. Henson, et al. First order topology. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1977. <http://eudml.org/doc/268630>.
@book{C1977, abstract = {CONTENTS§ 1. Introduction.................................................................................................... 5§ 2. Basic development............................................................................................... 8§ 3. Some elementarily equivalent spaces............................................................. 11§ 4. Elementary characterizations of some familiar spaces................................ 13§ 5. First order properties of C(X).............................................................................. 16§ 6. ℒ(X) and C(X) compared..................................................................................... 26§ 7. Some results on undecidability.......................................................................... 28§ 8. The class of topology lattices............................................................................. 32§ 9. Some bounds on the Löwenheim number for topology lattices.................. 33§10. Open questions................................................................................................... 36References.................................................................................................................... 39}, author = {C.W. Henson, C.G. Jockusch, Jr., L.A. Rubel, G. Takeuti}, keywords = {decidable; lattice of closed subsets; unit interval; ring of continuous real-valued functions; first-order properties; algebraic structures; completely regular; topological spaces; Hausdorff spaces; metric spaces; discrete spaces; one-point compactifications; infinitary language; true second order arithmetic}, language = {eng}, location = {Warszawa}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, title = {First order topology}, url = {http://eudml.org/doc/268630}, year = {1977}, }
TY - BOOK AU - C.W. Henson AU - C.G. Jockusch, Jr. AU - L.A. Rubel AU - G. Takeuti TI - First order topology PY - 1977 CY - Warszawa PB - Instytut Matematyczny Polskiej Akademi Nauk AB - CONTENTS§ 1. Introduction.................................................................................................... 5§ 2. Basic development............................................................................................... 8§ 3. Some elementarily equivalent spaces............................................................. 11§ 4. Elementary characterizations of some familiar spaces................................ 13§ 5. First order properties of C(X).............................................................................. 16§ 6. ℒ(X) and C(X) compared..................................................................................... 26§ 7. Some results on undecidability.......................................................................... 28§ 8. The class of topology lattices............................................................................. 32§ 9. Some bounds on the Löwenheim number for topology lattices.................. 33§10. Open questions................................................................................................... 36References.................................................................................................................... 39 LA - eng KW - decidable; lattice of closed subsets; unit interval; ring of continuous real-valued functions; first-order properties; algebraic structures; completely regular; topological spaces; Hausdorff spaces; metric spaces; discrete spaces; one-point compactifications; infinitary language; true second order arithmetic UR - http://eudml.org/doc/268630 ER -