Colimit-dense subcategories

Jiří Adámek; Andrew D. Brooke-Taylor; Tim Campion; Leonid Positselski; Jiří Rosický

Commentationes Mathematicae Universitatis Carolinae (2019)

  • Volume: 60, Issue: 4, page 447-462
  • ISSN: 0010-2628

Abstract

top
Among cocomplete categories, the locally presentable ones can be defined as those with a strong generator consisting of presentable objects. Assuming Vopěnka’s Principle, we prove that a cocomplete category is locally presentable if and only if it has a colimit dense subcategory and a generator consisting of presentable objects. We further show that a 3 -element set is colimit-dense in 𝐒𝐞𝐭 op , and spaces of countable dimension are colimit-dense in 𝐕𝐞𝐜 op .

How to cite

top

Adámek, Jiří, et al. "Colimit-dense subcategories." Commentationes Mathematicae Universitatis Carolinae 60.4 (2019): 447-462. <http://eudml.org/doc/295075>.

@article{Adámek2019,
abstract = {Among cocomplete categories, the locally presentable ones can be defined as those with a strong generator consisting of presentable objects. Assuming Vopěnka’s Principle, we prove that a cocomplete category is locally presentable if and only if it has a colimit dense subcategory and a generator consisting of presentable objects. We further show that a $3$-element set is colimit-dense in $\{\mathbf \{Set\}\}^\{\rm op\}$, and spaces of countable dimension are colimit-dense in $\{\mathbf \{Vec\}\}^\{\rm op\}$.},
author = {Adámek, Jiří, Brooke-Taylor, Andrew D., Campion, Tim, Positselski, Leonid, Rosický, Jiří},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {locally presentable category; colimit-dense subcategory; Vopěnka's Principle},
language = {eng},
number = {4},
pages = {447-462},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Colimit-dense subcategories},
url = {http://eudml.org/doc/295075},
volume = {60},
year = {2019},
}

TY - JOUR
AU - Adámek, Jiří
AU - Brooke-Taylor, Andrew D.
AU - Campion, Tim
AU - Positselski, Leonid
AU - Rosický, Jiří
TI - Colimit-dense subcategories
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 4
SP - 447
EP - 462
AB - Among cocomplete categories, the locally presentable ones can be defined as those with a strong generator consisting of presentable objects. Assuming Vopěnka’s Principle, we prove that a cocomplete category is locally presentable if and only if it has a colimit dense subcategory and a generator consisting of presentable objects. We further show that a $3$-element set is colimit-dense in ${\mathbf {Set}}^{\rm op}$, and spaces of countable dimension are colimit-dense in ${\mathbf {Vec}}^{\rm op}$.
LA - eng
KW - locally presentable category; colimit-dense subcategory; Vopěnka's Principle
UR - http://eudml.org/doc/295075
ER -

References

top
  1. Adámek J., Herrlich H., Reiterman J., Cocompleteness almost implies completeness, Proc. Conf. Categorical Topology and Its Relation to Analysis, Algebra and Combinatorics, Prague, 1988, World Sci. Publ., Teaneck (1989), pages 246–256. MR1047905
  2. Adámek J., Rosický J., Locally Presentable and Accessible Categories, London Mathematical Society Lecture Note Series, 189, Cambridge University Press, Cambridge, 1994. MR1294136
  3. Bardavid C., Profinite completion and double-dual: isomorphisms and counter-examples, available at arXiv:0801.2955v1 [math.GR] (2008), 8 pages. 
  4. Benson D. J., Infinite dimensional modules for finite groups, Infinite Length Modules, Bielefeld, 1998, Trends Math., Birkhäuser, Basel, 2000, pages 251–272. MR1789219
  5. Börger R., 10.1016/0022-4049(87)90041-7, J. Pure Appl. Algebra 46 (1987), no. 1, 35–47. MR0894390DOI10.1016/0022-4049(87)90041-7
  6. Galvin F., Horn A., 10.1090/S0002-9939-1970-0258713-1, Proc. Amer. Math. Soc. 24 (1970), 521–523. MR0258713DOI10.1090/S0002-9939-1970-0258713-1
  7. Isbell J. R., 10.1215/ijm/1255456274, Illinois J. Math. 4 (1960), 541–552. MR0175954DOI10.1215/ijm/1255456274
  8. Isbell J. R., Subobjects, adequacy, completeness and categories of algebras, Rozprawy Mat. 36 (1964), 33 pages. MR0163939
  9. Kennison J. F., Gildenhuys D., 10.1016/0022-4049(71)90001-6, J. Pure Appl. Algebra 1 (1971), no. 4, 317–346. MR0306289DOI10.1016/0022-4049(71)90001-6
  10. Leinster T., Codensity and the ultrafilter monad, Theory Appl. Categ. 28 (2013), no. 13, 332–370. MR3080612
  11. Rosický J., Codensity and binding categories, Comment. Math. Univ. Carolinae 16 (1975), no. 3, 515–529. MR0376800
  12. Rosický J., Trnková V., Adámek J., 10.1007/BF01182450, Algebra Universalis 27 (1990), no. 2, 153–170. MR1037859DOI10.1007/BF01182450

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.