Computing the numerical range of Krein space operators

Natalia Bebiano; J. da Providência; A. Nata; J.P. da Providência

Open Mathematics (2015)

  • Volume: 13, Issue: 1, page 146-156, electronic only
  • ISSN: 2391-5455

Abstract

top
Consider the Hilbert space (H,〈• , •〉) equipped with the indefinite inner product[u,v]=v*J u,u,v∈ H, where J is an indefinite self-adjoint involution acting on H. The Krein space numerical range WJ(T) of an operator T acting on H is the set of all the values attained by the quadratic form [Tu,u], with u ∈H satisfying [u,u]=± 1. We develop, implement and test an alternative algorithm to compute WJ(T) in the finite dimensional case, constructing 2 by 2 matrix compressions of T and their easily determined elliptical and hyperbolical numerical ranges. The numerical results reported here indicate that this method is very efficient, since it is faster and more accurate than either of the existing algorithms. Further, it may yield easy solutions for the inverse indefinite numerical range problem. Our algorithm uses an idea of Marcus and Pesce from 1987 for generating Hilbert space numerical ranges of matrices of size n.

How to cite

top

Natalia Bebiano, et al. "Computing the numerical range of Krein space operators." Open Mathematics 13.1 (2015): 146-156, electronic only. <http://eudml.org/doc/268706>.

@article{NataliaBebiano2015,
abstract = {Consider the Hilbert space (H,〈• , •〉) equipped with the indefinite inner product[u,v]=v*J u,u,v∈ H, where J is an indefinite self-adjoint involution acting on H. The Krein space numerical range WJ(T) of an operator T acting on H is the set of all the values attained by the quadratic form [Tu,u], with u ∈H satisfying [u,u]=± 1. We develop, implement and test an alternative algorithm to compute WJ(T) in the finite dimensional case, constructing 2 by 2 matrix compressions of T and their easily determined elliptical and hyperbolical numerical ranges. The numerical results reported here indicate that this method is very efficient, since it is faster and more accurate than either of the existing algorithms. Further, it may yield easy solutions for the inverse indefinite numerical range problem. Our algorithm uses an idea of Marcus and Pesce from 1987 for generating Hilbert space numerical ranges of matrices of size n.},
author = {Natalia Bebiano, J. da Providência, A. Nata, J.P. da Providência},
journal = {Open Mathematics},
keywords = {Indefinite inner product; Krein space; Numerical range; Compression; indefinite inner product; numerical range; compression; Hilbert space; indefinite self-adjoint involution; algorithm; numerical results},
language = {eng},
number = {1},
pages = {146-156, electronic only},
title = {Computing the numerical range of Krein space operators},
url = {http://eudml.org/doc/268706},
volume = {13},
year = {2015},
}

TY - JOUR
AU - Natalia Bebiano
AU - J. da Providência
AU - A. Nata
AU - J.P. da Providência
TI - Computing the numerical range of Krein space operators
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - 146
EP - 156, electronic only
AB - Consider the Hilbert space (H,〈• , •〉) equipped with the indefinite inner product[u,v]=v*J u,u,v∈ H, where J is an indefinite self-adjoint involution acting on H. The Krein space numerical range WJ(T) of an operator T acting on H is the set of all the values attained by the quadratic form [Tu,u], with u ∈H satisfying [u,u]=± 1. We develop, implement and test an alternative algorithm to compute WJ(T) in the finite dimensional case, constructing 2 by 2 matrix compressions of T and their easily determined elliptical and hyperbolical numerical ranges. The numerical results reported here indicate that this method is very efficient, since it is faster and more accurate than either of the existing algorithms. Further, it may yield easy solutions for the inverse indefinite numerical range problem. Our algorithm uses an idea of Marcus and Pesce from 1987 for generating Hilbert space numerical ranges of matrices of size n.
LA - eng
KW - Indefinite inner product; Krein space; Numerical range; Compression; indefinite inner product; numerical range; compression; Hilbert space; indefinite self-adjoint involution; algorithm; numerical results
UR - http://eudml.org/doc/268706
ER -

References

top
  1. [1] Y.H. Au-Yeung and N.K. Tsing, An extension of the Hausdorff-Toeplitz theorem on the numerical range, Proc. Amer. Math. Soc., 89 (1983) 215–218. Zbl0525.47002
  2. [2] N. Bebiano, R. Lemos, J. da Providência and G. Soares, On generalized numerical ranges of operators on an indefinite inner product space, Linear and Multilinear Algebra 52 No. 3–4, (2004) 203–233. Zbl1059.15029
  3. [3] N. Bebiano, H. Nakazato, J. da Providência, R. Lemos and G. Soares, Inequalities for JHermitian matrices, Linear Algebra Appl. 407 (2005) 125–139. Zbl1091.15024
  4. [4] N. Bebiano, J. da Providência, A. Nata and G. Soares, Krein Spaces Numerical Ranges and their Computer Generation, Electron. J. Linear Algebra, 17 (2008) 192–208. Zbl1147.15017
  5. [5] N. Bebiano, J. da Providência, R. Teixeira, Flat portions on the boundary of the indefinite numerical range of 3 x 3 matrices, Linear Algebra Appl. 428 (2008) 2863-2879. [WoS] Zbl1144.15016
  6. [6] N. Bebiano, I. Spitkovsky, Numerical ranges of Toeplitz operators with matrix symbols, Linear Algebra Appl., 436 (2012) 1721–1726. [WoS] Zbl1248.47005
  7. [7] N. Bebiano, J. da Providência, A. Nata and J. P. da Providência, An inverse problem for the indefinite numerical range, Linear Algebra Appl. to appear. Zbl1309.15035
  8. [8] M.-T. Chien and H. Nakazato, The numerical range of a tridiagonal operator, J. Math. Anal. Appl., 373, No. 1 (2011), 297–304. Zbl1205.47007
  9. [9] C.F. Dunkl, P. Gawron, J.A. Holbrook, Z. Puchala and K. Zyczkowski, Numerical shadows: measures and densities of numerical range, Linear Algebra Appl. 434 (2011) 2042–2080. [WoS] Zbl1227.15019
  10. [10] C. Crorianopoulos, P. Psarrakos and F. Uhlig. A method for the inverse numerical range problem. Linear Algebra Appl. 24 (2010) 055019. 
  11. [11] I.Gohberg, P.Lancaster and L.Rodman, Matrices and Indefinite Scalar Product. Birkhäuser, Basel-Boston, 1983. 
  12. [12] R.A. Horn and C.R. Johnson, Matrix Analysis. Cambridge University Press, New York, 1985. Zbl0576.15001
  13. [13] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991. Zbl0729.15001
  14. [14] C.-K. Li and L. Rodman, Shapes and computer generation of numerical ranges of Krein space operators. Electron. J. Linear Algebra, 3 (1998) 31–47. Zbl0905.47027
  15. [15] C.-K. Li and L. Rodman, Remarks on numerical ranges of operators in spaces with an indefinite metric, Proc. Amer. Math. Soc. 126 No. 4, (1998) 973–982. [Crossref] Zbl0897.15012
  16. [16] C.-K. Li, N.K. Tsing and F. Uhlig. Numerical ranges of an operator on an indefinite inner product space. Electron. J. Linear Algebra 1 (1996) 1–17. Zbl0851.15018
  17. [17] M. Marcus and C. Pesce, Computer generated numerical ranges and some resulting theorems. Linear and Multilinear Algebra, 20 (1987), 121–157. Zbl0626.65038
  18. [18] P.J. Psarrakos, Numerical range of linear pencils, Linear Algebra Appl. 317 (2000), 127-141. Zbl0966.15014
  19. [19] F. Uhlig, Faster and more accurate computation of the field of values boundary for n by n matrices, Linear and Multilinear Algebra 62(5) (2014), 554-567. Zbl1295.65051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.