Invariance groups of finite functions and orbit equivalence of permutation groups
Eszter K. Horváth; Géza Makay; Reinhard Pöschel; Tamás Waldhauser
Open Mathematics (2015)
- Volume: 13, Issue: 1, page 83-95, electronic only
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Bochert A., Ueber die Zahl der verschiedenen Werthe, die eine Function gegebener Buchstaben durch Vertauschung derselben erlangen kann, Math. Ann., 1889, 33, 584-590 Zbl21.0141.01
- [2] Clote P., Kranakis E., Boolean functions, invariance groups, and parallel complexity, SIAM J. Comput., 1991, 20, 553-590 Zbl0734.68038
- [3] Crama Y., Hammer P.L., Boolean functions. Theory, algorithms, and applications., Encyclopedia of Mathematics and its Applications 142. Cambridge University Press, 2011 Zbl1237.06001
- [4] Dixon J. D., Mortimer B., Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, 1996 Zbl0951.20001
- [5] Hall M.,The theory of groups, Chelsea Publishing Company, New York, 1976
- [6] Inglis N.F.J., On orbit equivalent permutation groups, Arch. Math., 1984, 43, 297-300 Zbl0545.20001
- [7] Kisielewicz A., Symmetry groups of Boolean functions and constructions of permutation groups, J. Algebra, 1998, 199, 379-403 Zbl0897.20001
- [8] Klein F., Vorlesungen über die Theorie der elliptischen Modulfunctionen. Ausgearbeitet und vervollständigt von Dr. Robert Fricke, Teubner, Leipzig, 1890 Zbl24.0412.01
- [9] Kearnes K., personal communication, 2010
- [10] Pöschel R., Galois connections for operations and relations, In: K. Denecke, M. Erné, and S.L. Wismath (Eds.), Galois connections and applications, Mathematics and its Applications, 565, Kluwer Academic Publishers, Dordrecht, 2004, 231-258 Zbl1063.08003
- [11] Pöschel R. and Kalužnin L. A., Funktionen- und Relationenalgebren, Deutscher Verlag der Wissenschaften, Berlin, 1979, Birkhäuser Verlag Basel, Math. Reihe Bd. 67, 1979
- [12] Remak R., Über die Darstellung der endlichen Gruppen als Untergruppen direkter Produkte, J. Reine Angew. Math., 1930, 163, 1-44 Zbl56.0129.01
- [13] Seress Á., Primitive groups with no regular orbits on the set of subsets, Bull. Lond. Math. Soc., 1997, 29, 697-704
- [14] Seress Á., Yang K., On orbit-equivalent, two-step imprimitive permutation groups, Computational Group Theory and the Theory of Groups, Contemp. Math., 2008, 470, 271-285 Zbl1171.20003
- [15] Siemons J., Wagner A., On finite permutation groups with the same orbits on unordered sets, Arch. Math. 1985, 45, 492-500 Zbl0582.20001
- [16] Wielandt H., Finite permutation groups, Academic Press, New York and London, 1964 Zbl0138.02501
- [17] Wielandt H., Permutation groups through invariant relations and invariant functions, Dept. of Mathematics, Ohio State University Columbus, Ohio, 1969