On quasistatic inelastic models of gradient type with convex composite constitutive equations
Open Mathematics (2003)
- Volume: 1, Issue: 4, page 670-689
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] H.-D. Alber: Materials with memory, Lecture Notes in Math., Vol. 1682, Springer, Berlin Heidelberg New York, 1998.
- [2] H.-D. Alber and K. Chełmiński: “Quasistatic problems in viscoplasticity theory I: Models with linear hardening”, A part of the monograph: I. Gohberg et al.: Operator theoretical methods and applications to mathematical physics. The Erhard Meister memorial volume, Birkhäuser, Basel, in print.
- [3] G. Anzellotti and S. Luckhaus: “Dynamical evolution of elasto-perfectly plastic bodies”, Appl. Math. Optim., Vol. 15, (1987), pp. 121–140. http://dx.doi.org/10.1007/BF01442650 Zbl0616.73047
- [4] J.P. Aubin and A. Cellina: Differential inclusions. Springer, Berlin Heidelberg New York, 1984.
- [5] M. Brokate: “Elastoplastic constitutive laws of nonlinear kinematic hardening type”, Technical Report 97-14, Berichtsreihe des Mathematischen Seminars, Kiel, 1997.
- [6] K. Chełmiński: “Coercive limits for a subclass of monotone constitutive equations in the theory of inelastic material behaviour of metals”, Mat. Stos., Vol. 40, (1997), pp. 41–81. Zbl1071.74582
- [7] K. Chełmiński: “On self-controlling models in the theory of inelastic material behaviour of metals”, Contin. Mech. Thermodyn., Vol. 10, (1998), pp. 121–133. http://dx.doi.org/10.1007/s001610050085 Zbl0911.73023
- [8] K. Chełmiński: “Global existence of weak-type solutions for models of monotone type in the theory of inelastic deformations”, Math. Meth. Appl. Sci., Vol. 25, (2002), pp. 1195–1230. http://dx.doi.org/10.1002/mma.336 Zbl1099.74029
- [9] K. Chełmiński: “Coercive approximation of viscoplasticity and plasticity”, Asymptotic Analysis, Vol. 26, (2001), pp. 105–133. Zbl1013.74010
- [10] K. Chełmiński: “On noncoercive models in the theory of inelastic deformations with internal variables”, ZAMM, Vol. 81, Suppl. 3, (2001), pp. 595–596. Zbl1051.74548
- [11] K. Chełmiński: “On quasistatic models in the theory of inelastic deformations”, Proceedings in Applied Mathematics, Vol. 1, (2002), pp. 401–402. http://dx.doi.org/10.1002/1617-7061(200203)1:1<401::AID-PAMM401>3.0.CO;2-Z Zbl05296956
- [12] K. Chełmiński and P. Gwiazda: “Monotonicity of operators of viscoplastic response: application to the model of Bodner-Partom”, Bull. Polish Acad. Sci.: Tech. Sci., Vol. 47, (1999), pp. 191–208. Zbl0987.74019
- [13] K. Chełmiński and P. Gwiazda: “Nonhomogeneous initial-boundary value problems for coercive and self-controlling models of monotone type”, Contin. Mech. Thermodyn., Vol. 12, (2000), pp. 217–234. http://dx.doi.org/10.1007/s001610050136 Zbl1003.74033
- [14] K. Chełmiński and Z. Naniewicz: “Coercive limits for constitutive equations of monotone-gradient type”, Nonlinear Anal., Vol. 48, (2002), pp. 1197–1214. http://dx.doi.org/10.1016/S0362-546X(01)00096-7 Zbl1056.35146
- [15] F.H. Clarke: Optimization and nonsmooth analysis, CMR Université de Montréal, Montréal, 1989. Zbl0727.90045
- [16] S. Guillaume: “Subdifferential evolution inclusion in nonconvex analysis”, Positivity, Vol. 4, (2000), pp. 357–395. http://dx.doi.org/10.1023/A:1009821417484 Zbl0968.35068
- [17] P. Gwiazda: “Non-homogeneous boundary value problem for the Chan-Bodner-Linholm model”, Math. Methods Appl. Sci., Vol. 23:11, (2000), pp. 1011–1022. http://dx.doi.org/10.1002/1099-1476(20000725)23:11<1011::AID-MMA148>3.0.CO;2-# Zbl0976.35090
- [18] B. Halphen and Nguyen Quoc Son: “Sur les matèriaux standards généralisés”, J. Méc., Vol. 14, (1975), pp. 39–63. Zbl0308.73017
- [19] P.-M. Suquet: “Evolution problems for a class of dissipative materials”, Quart. Appl. Math., Vol. 38, (1980), pp. 391–414. Zbl0501.73030
- [20] R. Temam: “A generalized Norton-Hoff model and the Prandtl-Reuss law of plasticity”, Arch. Rational Mech. Anal., Vol. 95, (1986), pp. 137–183. http://dx.doi.org/10.1007/BF00281085 Zbl0615.73035