Riemannian Polyhedra and Liouville-Type Theorems for Harmonic Maps

Zahra Sinaei

Analysis and Geometry in Metric Spaces (2014)

  • Volume: 2, Issue: 1, page 294-318, electronic only
  • ISSN: 2299-3274

Abstract

top
This paper is a study of harmonic maps fromRiemannian polyhedra to locally non-positively curved geodesic spaces in the sense of Alexandrov. We prove Liouville-type theorems for subharmonic functions and harmonic maps under two different assumptions on the source space. First we prove the analogue of the Schoen-Yau Theorem on a complete pseudomanifolds with non-negative Ricci curvature. Then we study 2-parabolic admissible Riemannian polyhedra and prove some vanishing results on them.

How to cite

top

Zahra Sinaei. "Riemannian Polyhedra and Liouville-Type Theorems for Harmonic Maps." Analysis and Geometry in Metric Spaces 2.1 (2014): 294-318, electronic only. <http://eudml.org/doc/268804>.

@article{ZahraSinaei2014,
abstract = {This paper is a study of harmonic maps fromRiemannian polyhedra to locally non-positively curved geodesic spaces in the sense of Alexandrov. We prove Liouville-type theorems for subharmonic functions and harmonic maps under two different assumptions on the source space. First we prove the analogue of the Schoen-Yau Theorem on a complete pseudomanifolds with non-negative Ricci curvature. Then we study 2-parabolic admissible Riemannian polyhedra and prove some vanishing results on them.},
author = {Zahra Sinaei},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {Harmonic maps; Riemannian polyhedra; pseudomanifolds; Liouville-type theorem; non-negative Ricci; harmonic maps; non-negative Ricci},
language = {eng},
number = {1},
pages = {294-318, electronic only},
title = {Riemannian Polyhedra and Liouville-Type Theorems for Harmonic Maps},
url = {http://eudml.org/doc/268804},
volume = {2},
year = {2014},
}

TY - JOUR
AU - Zahra Sinaei
TI - Riemannian Polyhedra and Liouville-Type Theorems for Harmonic Maps
JO - Analysis and Geometry in Metric Spaces
PY - 2014
VL - 2
IS - 1
SP - 294
EP - 318, electronic only
AB - This paper is a study of harmonic maps fromRiemannian polyhedra to locally non-positively curved geodesic spaces in the sense of Alexandrov. We prove Liouville-type theorems for subharmonic functions and harmonic maps under two different assumptions on the source space. First we prove the analogue of the Schoen-Yau Theorem on a complete pseudomanifolds with non-negative Ricci curvature. Then we study 2-parabolic admissible Riemannian polyhedra and prove some vanishing results on them.
LA - eng
KW - Harmonic maps; Riemannian polyhedra; pseudomanifolds; Liouville-type theorem; non-negative Ricci; harmonic maps; non-negative Ricci
UR - http://eudml.org/doc/268804
ER -

References

top
  1. [1] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J., 163(7):1405–1490, 2014. Zbl1304.35310
  2. [2] L. Ambrosio, N. Gigli, and G. Savaré. Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. ArXiv e-prints, June 2011. Zbl1312.53056
  3. [3] L. Ambrosio, A. Mondino, and G. Savaré. On the Bakry-n’Emery condition, the gradient estimates and the Local-to- Global property of RCD*(K, N) metric measure spaces. ArXiv e-prints, September 2013. Zbl1335.35088
  4. [4] Luigi Ambrosio and Paolo Tilli. Topics on analysis in metric spaces, volume 25 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2004. Zbl1080.28001
  5. [5] Kathrin Bacher and Karl-Theodor Sturm. Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. J. Funct. Anal., 259(1):28–56, 2010. Zbl1196.53027
  6. [6] Anders Björn and Jana Björn. Nonlinear potential theory on metric spaces, volume 17 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2011. Zbl1231.31001
  7. [7] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry, volume 33 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. Zbl1232.53037
  8. [8] Jeff Cheeger. On the Hodge theory of Riemannian pseudomanifolds. In Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, pages 91–146. Amer. Math. Soc., Providence, R.I., 1980. Zbl0461.58002
  9. [9] Jingyi Chen. On energy minimizing mappings between and into singular spaces. Duke Math. J., 79(1):77–99, 1995. Zbl0855.58015
  10. [10] J. Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal., 9(3):428–517, 1999. Zbl0942.58018
  11. [11] Georgios Daskalopoulos and Chikako Mese. Harmonic maps from a simplicial complex and geometric rigidity. J. Differential Geom., 78(2):269–293, 2008. Zbl1142.58014
  12. [12] Georgios Daskalopoulos and Chikako Mese. Harmonic maps between singular spaces I. Comm. Anal. Geom., 18(2):257–337, 2010. Zbl1229.53068
  13. [13] J. Eells and B. Fuglede. Harmonic maps between Riemannian polyhedra, volume 142 of Cambridge Tracts inMathematics. Cambridge University Press, Cambridge, 2001. 
  14. [14] M. Erbar, K. Kuwada, and K.-T. Sturm. On the Equivalence of the Entropic Curvature-Dimension Condition and Bochner’s Inequality on Metric Measure Spaces. ArXiv e-prints, March 2013. Zbl1329.53059
  15. [15] N. Gigli. On the differential structure of metric measure spaces and applications. ArXiv e-prints, May 2012. 
  16. [16] Nicola Gigli, Kazumasa Kuwada, and Shin-Ichi Ohta. Heat flow on Alexandrov spaces. Comm. Pure Appl. Math., 66(3):307–331, 2013. Zbl1267.58014
  17. [17] Mikhail Gromov and Richard Schoen. Harmonicmaps into singular spaces and p-adic superrigidity for lattices in groups of rank one. Inst. Hautes Études Sci. Publ. Math., (76):165–246, 1992. Zbl0896.58024
  18. [18] Vladimir Gol0dshtein and Marc Troyanov. Axiomatic theory of Sobolev spaces. Expo. Math., 19(4):289–336, 2001. Zbl1006.46023
  19. [19] Vladimir Gol0dshtein and Marc Troyanov. Capacities in metric spaces. Integral Equations Operator Theory, 44(2):212– 242, 2002. Zbl1030.46038
  20. [20] R. E. Greene and H. Wu. Smooth approximations of convex, subharmonic, and plurisubharmonic functions. Ann. Sci. École Norm. Sup. (4), 12(1):47–84, 1979. Zbl0415.31001
  21. [21] Piotr Hajłasz. Sobolev spaces on an arbitrary metric space. Potential Anal., 5(4):403–415, 1996. Zbl0859.46022
  22. [22] Piotr Hajłasz and Pekka Koskela. Sobolev met Poincaré. Mem. Amer. Math. Soc., 145(688):x+101, 2000. Zbl0954.46022
  23. [23] Juha Heinonen and Pekka Koskela. Quasiconformal maps in metric spaces with controlled geometry. Acta Math., 181(1):1–61, 1998. Zbl0915.30018
  24. [24] Stefan Hildebrandt. Liouville theorems for harmonicmappings, and an approach to Bernstein theorems. In Seminar on Differential Geometry, volume 102 of Ann. of Math. Stud., pages 107–131. Princeton Univ. Press, Princeton, N.J., 1982. Zbl0505.58014
  25. [25] Stefan Hildebrandt. Harmonic mappings of Riemannian manifolds. In Harmonic mappings and minimal immersions (Montecatini, 1984), volume 1161 of Lecture Notes in Math., pages 1–117. Springer, Berlin, 1985. 
  26. [26] S. Hildebrandt, J. Jost, and K.-O. Widman. Harmonic mappings and minimal submanifolds. Invent. Math., 62(2):269– 298, 1980/81. Zbl0446.58006
  27. [27] Ilkka Holopainen. Nonlinear potential theory and quasiregular mappings on Riemannian manifolds. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, (74):45, 1990. 
  28. [28] B. Hua, M. Kell, and C. Xia. Harmonic functions on metric measure spaces. ArXiv e-prints, August 2013. 
  29. [29] Renjin Jiang. Lipschitz continuity of solutions of Poisson equations in metric measure spaces. Potential Anal., 37(3):281–301, 2012. Zbl1252.31007
  30. [30] Renjin Jiang. Cheeger-harmonic functions in metric measure spaces revisited. J. Funct. Anal., 266(3):1373–1394, 2014. Zbl1295.30130
  31. [31] Jürgen Jost. Equilibrium maps between metric spaces. Calc. Var. Partial Differential Equations 2(2):173–204, 1994. Zbl0798.58021
  32. [32] Jürgen Jost. Nonlinear Dirichlet forms. New directions in Dirichlet forms, 1-47, AMS/IP Stud. Adv.Math., 8, Amer.Math. Soc., Providence, RI, 1998. Zbl0914.31006
  33. [33] M. Kell. A Note on Lipschitz Continuity of Solutions of Poisson Equations in Metric Measure Spaces. ArXiv e-prints, July 2013. 
  34. [34] Nicholas J. Korevaar and Richard M. Schoen. Sobolev spaces and harmonic maps for metric space targets. Comm. Anal. Geom., 1(3-4):561–659, 1993. Zbl0862.58004
  35. [35] Nicholas J. Korevaar and Richard M. Schoen. Global existence theorems for harmonic maps to non-locally compact spaces. Comm. Anal. Geom. 5 (1997), 5(2):333–387, 1997. Zbl0908.58007
  36. [36] Pekka Koskela, Kai Rajala, and Nageswari Shanmugalingam. Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces. J. Funct. Anal., 202(1):147–173, 2003. Zbl1027.31006
  37. [37] Kazuhiro Kuwae and Takashi Shioya. On generalized measure contraction property and energy functionals over Lipschitz maps. Potential Anal., 15(1-2):105–121, 2001. ICPA98 (Hammamet). Zbl0996.31006
  38. [38] Kazuhiro Kuwae and Takashi Shioya. Sobolev and Dirichlet spaces over maps between metric spaces. J. Reine Angew. Math., 555:39–75, 2003. Zbl1053.46020
  39. [39] Kazuhiro Kuwae and Karl-Theodor Sturm. On a Liouville type theorem for harmonic maps to convex spaces via Markov chains. In Proceedings of RIMS Workshop on Stochastic Analysis and Applications, RIMS Kôkyûroku Bessatsu, B6, pages 177–191. Res. Inst. Math. Sci. (RIMS), Kyoto, 2008. Zbl1131.31002
  40. [40] John Lott and Cédric Villani. Weak curvature conditions and functional inequalities. J. Funct. Anal., 245(1):311–333, 2007. Zbl1119.53028
  41. [41] John Lott and Cédric Villani. Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2), 169(3):903–991, 2009. Zbl1178.53038
  42. [42] Shin-ichi Ohta. On themeasure contraction property of metricmeasure spaces. Comment.Math. Helv., 82(4):805–828, 2007. 
  43. [43] Athanase Papadopoulos. Metric spaces, convexity and nonpositive curvature, volume 6 of IRMA Lectures inMathematics and Theoretical Physics. European Mathematical Society (EMS), Zürich, 2005. 
  44. [44] Nageswari Shanmugalingam. Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev.Mat. Iberoamericana, 16(2):243–279, 2000. Zbl0974.46038
  45. [45] Richard Schoen and Shing Tung Yau. Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature. Comment. Math. Helv., 51(3):333–341, 1976. Zbl0361.53040
  46. [46] Karl-Theodor Sturm. On the geometry of metric measure spaces. II. Acta Math., 196(1):133–177, 2006. Zbl1106.53032
  47. [47] M. Troyanov. Parabolicity of manifolds. Siberian Adv. Math., 9(4):125–150, 1999. Zbl0991.31008
  48. [48] Yuanlong Xin. Geometry of harmonic maps. Progress in Nonlinear Differential Equations and their Applications, 23. Birkhäuser Boston Inc., Boston, MA, 1996. 
  49. [49] Shing Tung Yau. Some function-theoretic properties of complete Riemannianmanifold and their applications to geometry. Indiana Univ. Math. J., 25(7):659–670, 1976. Zbl0335.53041
  50. [50] Hui-Chun Zhang and Xi-Ping Zhu. Yau’s gradient estimates on Alexandrov spaces. J. Differential Geom., 91(3):445–522, 2012. Zbl1258.53075

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.