K-theory from the point of view of C*-algebras and Fredholm representations

Alexandr Mishchenko

Open Mathematics (2005)

  • Volume: 3, Issue: 4, page 766-793
  • ISSN: 2391-5455

Abstract

top
These notes represent the subject of five lectures which were delivered as a minicourse during the VI conference in Krynica, Poland, “Geometry and Topology of Manifolds”, May, 2–8, 2004.

How to cite

top

Alexandr Mishchenko. "K-theory from the point of view of C*-algebras and Fredholm representations." Open Mathematics 3.4 (2005): 766-793. <http://eudml.org/doc/268820>.

@article{AlexandrMishchenko2005,
abstract = {These notes represent the subject of five lectures which were delivered as a minicourse during the VI conference in Krynica, Poland, “Geometry and Topology of Manifolds”, May, 2–8, 2004.},
author = {Alexandr Mishchenko},
journal = {Open Mathematics},
keywords = {19L; 19K; 19J25; 55N15},
language = {eng},
number = {4},
pages = {766-793},
title = {K-theory from the point of view of C*-algebras and Fredholm representations},
url = {http://eudml.org/doc/268820},
volume = {3},
year = {2005},
}

TY - JOUR
AU - Alexandr Mishchenko
TI - K-theory from the point of view of C*-algebras and Fredholm representations
JO - Open Mathematics
PY - 2005
VL - 3
IS - 4
SP - 766
EP - 793
AB - These notes represent the subject of five lectures which were delivered as a minicourse during the VI conference in Krynica, Poland, “Geometry and Topology of Manifolds”, May, 2–8, 2004.
LA - eng
KW - 19L; 19K; 19J25; 55N15
UR - http://eudml.org/doc/268820
ER -

References

top
  1. [1] M.A. Naimark: Normed algebras, Nauka, Moscow, 1968 (in Russian), English translation: Wolters-NoordHoff, 1972. 
  2. [2] A. Connes: Noncommutative Geometry. Academic Press, 1994. 
  3. [3] L.S. Pontryagin: “Classification of some fiber bundles”, Dokl. Akad. Nauk SSSR, Vol. 47(5), (1945), pp. 327–330 (in Russian). 
  4. [4] L.S. Pontryagin: “Characteristic cycles of differntiable manifolds”, Mathem. Sbornik, Vol. 21(2), (1947), pp 233–284 (in Russian). 
  5. [5] W. Browder: Homotopy type of differential manifolds, Colloquium on Algebraic Topology, Aarhus Universitet, Aarhus, Matematisk Institut, 1962, pp. 42–46. 
  6. [6] S.P. Novikov: “Homotopy equivalent smoth manifolds, I”, Izv. Akad. Nauk SSSR, Ser. Mat., Vol. 28, (1964), pp. 365–474. Zbl0151.32103
  7. [7] F. Hirzebruch: “On Steenrod’s reduced powers the index of interia, and the Todd genus”, Proc. Nat., Acad. Sci. U.S.A., Vol. 39, (1953), pp. 951–956. http://dx.doi.org/10.1073/pnas.39.9.951 Zbl0051.14501
  8. [8] V.A. Rokhlin: “New results in the theory of 4-dimensional manifolds”, Dokl. Akad. Nauk SSSR, Vol. 84, (1952), pp. 221–224. 
  9. [9] A. Poincare: “Analysis situs”, Journal de l’Ecole Polytechniques, Vol. 1, (1895), pp. 1–121. Zbl26.0541.07
  10. [10] A.S. Mishchenko: “Homotopy invariant of non simply connected manifolds. Rational invariants. I”, Izv. Akad. Nauk. SSSR, Vol. 43(3), (1970), pp. 501–514. 
  11. [11] A.S. Mishchenko: “Controlled Fredholm representations”, In: S.C. Ferry, A. Ranicki and J. Rosenberg (Eds.): Novikov Conjectures, Index Theorems and Rigidity Vol. 1, London Math. Soc. Lect. Notes Series, Vol, 226, Cambridge Univ. Press, 1995, pp. 174–200. Zbl0957.58021
  12. [12] A.S. Mishchenko: “ C *-algebras and K-theory”, Algebraic topology, Lecutre Notes in Mathematics, Vol. 763, Aarhus, 1979, pp 262–274. http://dx.doi.org/10.1007/BFb0088090 
  13. [13] C.T.C. Wall, Surgery of compact manifolds, Academic Press, New York, 1971. 
  14. [14] R. Thom: “Quelques properietes globales des varietes differentiables” Comm. Math. Helv., Vol. 28, (1954), pp. 17–86. Zbl0057.15502
  15. [15] G. Luke and A.S. Mishchenko: Vector Bundles and Their Applications, Kluwer Academic Publishers, Dordrrecht, Boston, London, 1998. 
  16. [16] D. Husemoller: Fiber Bundles, McGraw-Hill, N.Y., 1966. 
  17. [17] M. Karoubi: K-Theory, An Introduction, Springer-Verlag, Berlin, Heidelberg, new York, 1978. 
  18. [18] M.F. Atiah: “ k-theory and reality”, Quart. J. Math. Oxford, Ser., (2), Vol. 17, (1966), pp.367–386. Zbl0146.19101
  19. [19] M.F. Atiyah: “Global theory of elliptic operators”, In: Intern. Conf. on Functional Analysis and Related Topics (Tokyo 1969), Univ. Tokyo Press, Tokyo, 1970, pp. 21–30. 
  20. [20] R. Palais: Seminar on the atiyah-singer index theorem, Ann. of Math. Stud., Vol. 57, Princeton Univ. Press, Princeton, N.J., 1965. 
  21. [21] W. Paschke: “Inner product modules over b *-algebras” Trans. Amer. Math. Soc., Vol. 182, (1973), pp. 443–468. http://dx.doi.org/10.2307/1996542 Zbl0239.46062
  22. [22] N. Kuiper: “The homotopy type of the unitary group of hilbert space”, Topology, Vol. 3, (1965), pp.19–30. http://dx.doi.org/10.1016/0040-9383(65)90067-4 
  23. [23] A.S. Mishchenko and A.T. Fomenko: “Index of elliptic operators over C *-algebras”, Izvrstia AN SSSR, ser. matem., Vol. 43(4), (1979), pp. 831–859. Zbl0416.46052
  24. [24] G. Kasparov: “Equivariant kk-theory and the novikov conjecture”, Invent. Math., Vol. 91, (1988), pp. 147–201. http://dx.doi.org/10.1007/BF01404917 Zbl0647.46053
  25. [25] A.A. Irmatov and A.S. Mishchenko: “On compact and fredholm operators over c*-algebras and a new topology in the space of compact operators”, arXiv:math.KT 0504548 vl 27 Apr 2005. Zbl1163.47032
  26. [26] M.F. Atiyah and G. Segal: “Twisted k-theory”, arXiv: math.KT 0407054 vl, 5Jul2004. 
  27. [27] A.S. Mishchenko: “Theory of almost algebraic Poincaré complexes and local combinatorial Hirzebruch formula”, Acta. Appl. Math., Vol. 68, (2001), pp. 5–37. http://dx.doi.org/10.1023/A:1012062214272 
  28. [28] G. Lusztig: “Novikov’s higher signature and families of elliptic operators”” J. Diff. Geometry, Vol. 7, (1972), pp. 229–256. Zbl0265.57009
  29. [29] S.C. Ferry, A. Ranicki and J. Rosenberg (Eds.): Proceedings of the Conference ’Novikov Conjectures, Index Theorems and Rigidity, Cambrdige Univ. Press, 1995. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.