The closure diagram for nilpotent orbits of the split real form of E8
Open Mathematics (2003)
- Volume: 1, Issue: 4, page 573-643
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topDragomir Đoković. "The closure diagram for nilpotent orbits of the split real form of E8." Open Mathematics 1.4 (2003): 573-643. <http://eudml.org/doc/268838>.
@article{DragomirĐoković2003,
abstract = {Let \[\mathcal \{O\}\_1 \]
and \[\mathcal \{O\}\_2 \]
be adjoint nilpotent orbits in a real semisimple Lie algebra. Write \[\mathcal \{O\}\_1 \]
≥ \[\mathcal \{O\}\_2 \]
if \[\mathcal \{O\}\_2 \]
is contained in the closure of \[\mathcal \{O\}\_1 \]
. This defines a partial order on the set of such orbits, known as the closure ordering. We determine this order for the split real form of the simple complex Lie algebra, E 8. The proof is based on the fact that the Kostant-Sekiguchi correspondence preserves the closure ordering. We also present a comprehensive list of simple representatives of these orbits, and list the irreeducible components of the boundaries \[\partial \mathcal \{O\}\_1^i \]
and of the intersections \[\overline\{\mathcal \{O\}\_l^i \} \cap \overline\{\mathcal \{O\}\_l^j \} \]
.},
author = {Dragomir Đoković},
journal = {Open Mathematics},
keywords = {17B25; 17B45},
language = {eng},
number = {4},
pages = {573-643},
title = {The closure diagram for nilpotent orbits of the split real form of E8},
url = {http://eudml.org/doc/268838},
volume = {1},
year = {2003},
}
TY - JOUR
AU - Dragomir Đoković
TI - The closure diagram for nilpotent orbits of the split real form of E8
JO - Open Mathematics
PY - 2003
VL - 1
IS - 4
SP - 573
EP - 643
AB - Let \[\mathcal {O}_1 \]
and \[\mathcal {O}_2 \]
be adjoint nilpotent orbits in a real semisimple Lie algebra. Write \[\mathcal {O}_1 \]
≥ \[\mathcal {O}_2 \]
if \[\mathcal {O}_2 \]
is contained in the closure of \[\mathcal {O}_1 \]
. This defines a partial order on the set of such orbits, known as the closure ordering. We determine this order for the split real form of the simple complex Lie algebra, E 8. The proof is based on the fact that the Kostant-Sekiguchi correspondence preserves the closure ordering. We also present a comprehensive list of simple representatives of these orbits, and list the irreeducible components of the boundaries \[\partial \mathcal {O}_1^i \]
and of the intersections \[\overline{\mathcal {O}_l^i } \cap \overline{\mathcal {O}_l^j } \]
.
LA - eng
KW - 17B25; 17B45
UR - http://eudml.org/doc/268838
ER -
References
top- [1] D. Barbasch and M.R. Sepanski: “Closure ordering and the Kostant-Sekiguchi correspondence”, Proc. Amer. Math. Soc., Vol. 126, (1998), pp. 311–317. http://dx.doi.org/10.1090/S0002-9939-98-04090-8 Zbl0896.22004
- [2] W.M. Beynon and N. Spaltenstein: “Green functions of finite Chevalley groups of type E n (n=6, 7, 8)”, J. Algebra, Vol. 88, (1984), pp. 584–614. http://dx.doi.org/10.1016/0021-8693(84)90084-X
- [3] N. Bourbaki: Groupes et algèbres de Lie, Chap. 7 et 8, Hermann, Paris, 1975.
- [4] R.W. Carter: “Conjugacy classes in the Weyl group”, Comp. Math., Vol. 25, (1972), pp. 1–59. Zbl0254.17005
- [5] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, S.M. Watt: Maple V Language reference Manual, Springer-Verlag, New York, 1991, xv+267 pp.
- [6] D.H. Collingwood and W.M. McGovern: Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York, 1993. Zbl0972.17008
- [7] D.Ž. Đoković: “Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers”, J. Algebra, Vol. 112, (1988), pp. 503–524. http://dx.doi.org/10.1016/0021-8693(88)90104-4
- [8] D.Ž. Đoković: “Explicit Cayley triples in real forms of G 2, F 4, and E 6”, Pacific. J. Math., Vol. 184, (1998), pp. 231–255. Zbl1040.17004
- [9] D.Ž. Đoković: “Explicit Cayley triples in real forms of E 8”, Pacific J. Math.”, Vol. 194, (2000), pp. 57–82. http://dx.doi.org/10.2140/pjm.2000.194.57 Zbl1013.22003
- [10] D.Ž. Đoković: “The closure diagrams for nilpotent orbits of real forms of F 4 and G 2”, J. Lie Theory, Vol. 10, (2000), pp. 491–510.
- [11] D.Ž. Đoković: “The closure diagrams for nilpotent orbits of real forms of E 6”, J. Lie Theory, 11, (2001), pp. 381–413.
- [12] D.Ž. Đoković: “The closure diagrams for nilpotent orbits of the real forms EVI and EVII of E 7”, Represent. Theory, Vol. 5, (2001), pp. 17–42. http://dx.doi.org/10.1090/S1088-4165-01-00112-1 Zbl1031.17004
- [13] D.Ž. Đoković: “The closure diagram for nilpotent orbits of the split real forms of E 7”, Represent. Theory, Vol. 5, (2001), pp. 284–316. http://dx.doi.org/10.1090/S1088-4165-01-00124-8 Zbl1050.17007
- [14] D.Ž. Đoković: “The closure diagram for nilpotent orbits of the real form EIX of E 8”, Asian J. Math., Vol. 5, (2001), pp. 561–584. Zbl1033.17012
- [15] K. Mizuno: “The conjugate classes of unipotent elements of the Chevalley groups E 7 and E 8”, Tokyo J. Math., Vol. 3, (1980), pp. 391–461. http://dx.doi.org/10.3836/tjm/1270473003
- [16] A. Mortajine: Classification des espaces préhomogènes de type parabolique réguliers et de leurs invariants relatifs, Hermann, Paris, 1991.
- [17] M. Sato and T. Kimura: “A classification of irreducible prehomogeneous vector spaces and their relative invariants”, Nagoya Math. J., Vol. 65, (1977), pp. 1–155. Zbl0321.14030
- [18] M. Sato, T. Shintani, M. Muro: “Theory of prehomogeneous vector spaces (algebraic part)”, Nagoya Math. J., Vol. 120, (1990), pp. 1–34. Zbl0715.22014
- [19] M.A.A. van Leeuwen, A.M. Cohen, B. Lisser: LiE, version 2.1, a software package for Lie group theoretic computations, Computer Algebra Group of CWI, Amsterdam, The Netherlands.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.