Irreducible Components of the Nilpotent Commuting Variety of a Symmetric Semisimple Lie Algebra

Michaël Bulois[1]

  • [1] Université de Brest Département de mathématiques 29238 Brest cedex 3 (France)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 1, page 37-80
  • ISSN: 0373-0956

Abstract

top
Let θ be an involution of the finite dimensional semisimple Lie algebra 𝔤 and 𝔤 = 𝔨 𝔭 be the associated Cartan decomposition. The nilpotent commuting variety of ( 𝔤 , θ ) consists in pairs of nilpotent elements ( x , y ) of 𝔭 such that [ x , y ] = 0 . It is conjectured that this variety is equidimensional and that its irreducible components are indexed by the orbits of 𝔭 distinguished elements. This conjecture was established by A. Premet in the case ( 𝔤 × 𝔤 , θ ) where θ ( x , y ) = ( y , x ) . In this work we prove the conjecture in a significant number of other cases.

How to cite

top

Bulois, Michaël. "Composantes irréductibles de la variété commutante nilpotente d’une algèbre de Lie symétrique semi-simple." Annales de l’institut Fourier 59.1 (2009): 37-80. <http://eudml.org/doc/10396>.

@article{Bulois2009,
abstract = {Soit $\theta $ une involution de l’algèbre de Lie semi-simple de dimension finie $\mathfrak\{g\}$ et $\mathfrak\{g\}=\mathfrak\{k\}\oplus \mathfrak\{p\}$ la décomposition de Cartan associée. La variété commutante nilpotente de l’algèbre de Lie symétrique $(\mathfrak\{g\},\theta )$ est formée des paires d’éléments nilpotents $(x,y)$ de $\mathfrak\{p\}$ tels que $[x,y]=0$. Il est conjecturé que cette variété est équidimensionnelle et que ses composantes irréductibles sont indexées par les orbites d’éléments $\mathfrak\{p\}$-distingués. Cette conjecture a été démontrée par A. Premet dans le cas $(\mathfrak\{g\}\times \mathfrak\{g\},\theta )$ avec $\theta (x,y)=(y,x)$. Dans ce travail, nous la prouvons dans un grand nombre d’autres cas.},
affiliation = {Université de Brest Département de mathématiques 29238 Brest cedex 3 (France)},
author = {Bulois, Michaël},
journal = {Annales de l’institut Fourier},
keywords = {Semisimple Lie algebra; symmetric pair; commuting variety; nilpotent orbit},
language = {fre},
number = {1},
pages = {37-80},
publisher = {Association des Annales de l’institut Fourier},
title = {Composantes irréductibles de la variété commutante nilpotente d’une algèbre de Lie symétrique semi-simple},
url = {http://eudml.org/doc/10396},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Bulois, Michaël
TI - Composantes irréductibles de la variété commutante nilpotente d’une algèbre de Lie symétrique semi-simple
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 1
SP - 37
EP - 80
AB - Soit $\theta $ une involution de l’algèbre de Lie semi-simple de dimension finie $\mathfrak{g}$ et $\mathfrak{g}=\mathfrak{k}\oplus \mathfrak{p}$ la décomposition de Cartan associée. La variété commutante nilpotente de l’algèbre de Lie symétrique $(\mathfrak{g},\theta )$ est formée des paires d’éléments nilpotents $(x,y)$ de $\mathfrak{p}$ tels que $[x,y]=0$. Il est conjecturé que cette variété est équidimensionnelle et que ses composantes irréductibles sont indexées par les orbites d’éléments $\mathfrak{p}$-distingués. Cette conjecture a été démontrée par A. Premet dans le cas $(\mathfrak{g}\times \mathfrak{g},\theta )$ avec $\theta (x,y)=(y,x)$. Dans ce travail, nous la prouvons dans un grand nombre d’autres cas.
LA - fre
KW - Semisimple Lie algebra; symmetric pair; commuting variety; nilpotent orbit
UR - http://eudml.org/doc/10396
ER -

References

top
  1. V. Baranovski, The variety of pairs of commuting nilpotent matrices is irreducible, Transform. Groups 6 (2001), 3-8 Zbl0980.15012MR1825165
  2. N. Bourbaki, Groupes et algèbres de Lie. Chapitres 4, 5 et 6, (1968), Hermann, Paris Zbl0483.22001MR240238
  3. D. Z. Djokovic, Classification of nilpotent elements in simple exceptional real algebras of inner type and description of their centralizers, J. Algebra 112 (1988), 503-524 Zbl0639.17005MR926619
  4. D. Z. Djokovic, Classification of nilpotent elements in simple real lie algebras E 6 ( 6 ) and E 6 ( - 26 ) and description of their centralizers, J. Algebra 116 (1988), 196-207 Zbl0653.17004MR944155
  5. D. Z. Djokovic, Explicit Cayley triples in real forms of F 2 , G 4 and E 6 , Pacific J. Math. 184 (1998), 231-255 Zbl1040.17004
  6. D. Z. Djokovic, Explicit Cayley triples in real forms of E 8 , Pacific J. of Math. 194 (2000), 57-82 Zbl1013.22003MR1756626
  7. D. Z. Djokovic, The closure diagram for nilpotent orbits of the split real form of E 7 , Represent. Theory 5 (2001), 284-316 Zbl1050.17007MR1857083
  8. D. Z. Djokovic, The closure diagrams for nilpotent orbits of real forms of E 6 , J. Lie Theory 11 (2001), 381-413 Zbl1049.17006MR1851797
  9. D. Z. Djokovic, The closure diagram for nilpotent orbits of the split real form of E 8 , Centr. Europ. J. Math. 4 (2003), 573-643 Zbl1050.17006MR2040654
  10. E. B. Elashvili, The centralisers of nilpotent elements in semisimple Lie algebras, Trudy Tbiliss. Inst. Mat. Nats. Nauk Gruzin. 46 (1975), 109-132 Zbl0323.17004
  11. R. Goodman, N. R. Wallach, An algebraic group approach to compact symetric spaces, (1997) 
  12. S. Helgason, Differential geometry, Lie groups, and symmetric spaces, (1978), Academic press Zbl0451.53038MR514561
  13. S. G. Jackson, A. G. Noel, Prehomogeneous spaces associated with nilpotent orbits, (2005) Zbl1147.17300
  14. J. C. Jantzen, Nilpotent orbits in representation theory, Lie Theory 228 (2004), 1-211, Birkhäuser Zbl1169.14319MR2042689
  15. N. Kawanaka, Orbits and stabilizers of nilpotent elements of a graded semisimple Lie algebra, J. Fac. Sci. Univ. Tokyo 34 (1987), 573-597 Zbl0651.20046MR927602
  16. D. R. King, The component groups of nilpotents in exceptionnal simple real Lie algebras, Comm. Algebra 20 (1992), 219-284 Zbl0758.17006MR1145333
  17. B. Kostant, S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753-809 Zbl0224.22013MR311837
  18. T. Otha, The singularities of the closure of nilpotent orbits in certain symmetric pairs, Tôhoku Math. J. 38 (1986), 441-468 Zbl0654.22004MR854462
  19. T. Otha, The closure of nilpotent orbits in the classical symmetric pairs and their singularities, Tôhoku Math. J. 43 (1991), 161-211 Zbl0738.22007MR1104427
  20. D. I. Panyushev, The Jacobian modules of a representation of a Lie algebra and geometry of commuting varieties, Compositio Math. 94 (1994), 181-199 Zbl0834.17003MR1302315
  21. D. I. Panyushev, On the conormal bundle of a G -stable subvariety, Manuscripta Math. 99 (1999), 185-202 Zbl0961.14030MR1697213
  22. D. I. Panyushev, On the irreducibility of commuting varieties associated with involutions of simple Lie algebras, Func. Anal. Appl. 38 (2004), 38-44 Zbl1125.17001MR2061790
  23. D. I. Panyushev, Two results on centralisers of nilpotent elements, J. Pure Appl. Algebra 212 (2008), 774-779 Zbl1137.17017MR2363491
  24. D. I. Panyushev, O. Yakimova, Symmetric pairs and associated commuting varieties, Math. Proc. 143 (2007), 307-321 Zbl1126.17010MR2364652
  25. V. L. Popov, E. A. Tevelev, Self-dual projective algebraic varieties associated with symmetric spaces, Algebraic transformation groups and algebraic varieties 132 (2004), 131-167, Springer Verlag Zbl1093.14072MR2090673
  26. A. Premet, Nilpotent commuting varieties of reductive Lie algebras, Invent. Math. 154 (2003), 653-683 Zbl1068.17006MR2018787
  27. R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math. 38 (1979), 311-327 Zbl0409.17006MR535074
  28. H. Sabourin, R. W. T. Yu, Sur l’irréductibilité de la variété commutante d’une paire symétrique réductive de rang 1, Bull. Sci. Math. 126 (2002), 143-150 Zbl1017.17010MR1906241
  29. H. Sabourin, R. W. T. Yu, On the irreducibility of the commuting variety of the symmetric pair ( 𝔰𝔬 p + 2 , 𝔰𝔬 p × 𝔰𝔬 2 ) , J. Lie Theory 16 (2006), 57-65 Zbl1128.17009MR2196413
  30. J. Sekiguchi, The nilpotent subvariety of the vector space associated to a symmetric pair, Publ. RIMS Kyoto Univ. 20 (1984), 155-212 Zbl0556.14022MR736100
  31. T. A. Springer, R. Steinberg, Conjugacy classes, Seminar on algebraic groups and related finite groups 131 (1970), 167-266, Springer Zbl0249.20024MR268192
  32. P. Tauvel, R. W. T. Yu, Lie algebras and algebraic groups, (2005), Springer Zbl1068.17001MR2146652
  33. E. B. Vinberg, Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra, Selecta Math. Sovietica 6 (1987), 15-35 Zbl0612.17010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.