Schur and Schubert polynomials as Thom polynomials-cohomology of moduli spaces

László Fehér; Richárd Rimányi

Open Mathematics (2003)

  • Volume: 1, Issue: 4, page 418-434
  • ISSN: 2391-5455

Abstract

top
The theory of Schur and Schubert polynomials is revisited in this paper from the point of view of generalized Thom polynomials. When we apply a general method to compute Thom polynomials for this case we obtain a new definition for (double versions of) Schur and Schubert polynomials: they will be solutions of interpolation problems.

How to cite

top

László Fehér, and Richárd Rimányi. "Schur and Schubert polynomials as Thom polynomials-cohomology of moduli spaces." Open Mathematics 1.4 (2003): 418-434. <http://eudml.org/doc/268868>.

@article{LászlóFehér2003,
abstract = {The theory of Schur and Schubert polynomials is revisited in this paper from the point of view of generalized Thom polynomials. When we apply a general method to compute Thom polynomials for this case we obtain a new definition for (double versions of) Schur and Schubert polynomials: they will be solutions of interpolation problems.},
author = {László Fehér, Richárd Rimányi},
journal = {Open Mathematics},
keywords = {14N10; 57R45},
language = {eng},
number = {4},
pages = {418-434},
title = {Schur and Schubert polynomials as Thom polynomials-cohomology of moduli spaces},
url = {http://eudml.org/doc/268868},
volume = {1},
year = {2003},
}

TY - JOUR
AU - László Fehér
AU - Richárd Rimányi
TI - Schur and Schubert polynomials as Thom polynomials-cohomology of moduli spaces
JO - Open Mathematics
PY - 2003
VL - 1
IS - 4
SP - 418
EP - 434
AB - The theory of Schur and Schubert polynomials is revisited in this paper from the point of view of generalized Thom polynomials. When we apply a general method to compute Thom polynomials for this case we obtain a new definition for (double versions of) Schur and Schubert polynomials: they will be solutions of interpolation problems.
LA - eng
KW - 14N10; 57R45
UR - http://eudml.org/doc/268868
ER -

References

top
  1. [1] [AB82] M.F. Atiyah and R. Bott: “The Yang-Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, Vol. 308, (1982), pp. 523–615. Zbl0509.14014
  2. [2] [AVGL91] V.I. Arnold, V.A. Vassiliev, V.V. Goryunov, O.V. Lyashko: “Singularities. Local and global theory”, Enc. Math. Sci. Dynamical Systems VI, Springer-Verlag, Berlin, 1991. 
  3. [3] [BF99] A. Buch and W. Fulton: “Chern class formulas for quiver varieties”, Inv. Math., Vol. 135, (1999), pp. 665–687. http://dx.doi.org/10.1007/s002220050297[Crossref] Zbl0942.14027
  4. [4] [CLL02] W. Chen, B. Li, J.D. Louck: “The flagged double schur function”, J. Algebraic Combin., Vol. 15, (2002), pp. 7–26. http://dx.doi.org/10.1023/A:1013217015135[Crossref] Zbl0990.05133
  5. [5] [FP89] W. Fulton and P. Pragacz: Schubert Varieties and Degeneracy Loci, Springer-Verlag, Berlin, 1998. 
  6. [6] [FR02] L. Fehér and R. Rimányi: “Classes of degeneraci loci for quivers-the Thom polynomial point of view”, Duke J. Math., Vol. 114, (2002), pp. 193–213. http://dx.doi.org/10.1215/S0012-7094-02-11421-5[Crossref] Zbl1054.14010
  7. [7] [FR03] L. M. Fehér and R. Rimányi: “Calculation of Thom polynomials and other cohomological obstructions for group actions”, to appear in Sao Carlos Singularities 2002, Cont. Math. AMS, 2003. 
  8. [8] [FRN03] L. Fehér, A. Némethi, R. Rimányi: Coincident root loci of binary forms, http://www.math.ohio-state.edu/∼rimanyi/cikkek, 2003. Zbl1115.14046
  9. [9] [Ful92] W. Fulton: “Flags, Schubert polynomials, degeneracy loci, and determinantal formulas”, Duke Math. J., Vol. 65, (1992), pp. 381–420. http://dx.doi.org/10.1215/S0012-7094-92-06516-1[Crossref] Zbl0788.14044
  10. [10] [Ful98] W. Fulton: Intersection Theory. Springer, Berlin, 1984, 1998. [WoS] 
  11. [11] [Kaz95] M. Kazarian: “Characteristic classes of Lagrange and Legendre singularities”, Russian Math. Surv., Vol. 50, (1995), pp. 701–726. http://dx.doi.org/10.1070/RM1995v050n04ABEH002579[Crossref] Zbl0868.58030
  12. [12] [Kaz97] M.É. Kazarian: “Characteristic classes of singularity theory”, In: V.I. Arnold et al., (Eds): The Arnold-Gelfand mathematical seminars: geometry and singularity theory, Birkhauser Boston, Boston MA, 1997, pp. 325–340. 
  13. [13] [Kaz00] M. Kazarian: “Thom polynomials for Lagrange, Legendre and critical point singularities”, Isaac Newton Institute for Math. Sci., preprint, 2000. 
  14. [14] [Kir84] F. Kirwan: Cohomology of quotients in symplectic and algebraic geometry. No. 31, in Mathematical Notes, Princeton University Press, Princeton NY, 1984. 
  15. [15] [Kir92] F. Kirwan: “The cohomology rings of moduli spaces of bundles over Riemann surfaces”, J. Amer. Math. Soc., Vol. 5, (1992), pp. 853–906. http://dx.doi.org/10.2307/2152712[Crossref] 
  16. [16] [KL74] G. Kempf and D. Laksov: “The determinantal formula of Schubert calculus”, Acta. Math., Vol. 132, (1974), pp. 153–162. http://dx.doi.org/10.1007/BF02392111[Crossref] Zbl0295.14023
  17. [17] [Las74] Alain Lascoux: “Puissances extérieures, déterminants et cycles de Schubert”, Bull. Soc. Math. France, Vol. 102, (1974), pp. 161–179. Zbl0295.14024
  18. [18] [LS82] Lascoux and Schützenberger: “Polynômes de Schubert”, C. R. Acad. Sci. Paris, Vol. 294, (1982), pp. 447–450. Zbl0495.14031
  19. [19] [Mac91] I.G. MacDonald: Notes on Schubert polynomials, LACIM 6, 1991. 
  20. [20] [Pra88] Piotr Pragacz: “Enumerative geometry of degeneracy loci”, Ann. Sci. École Norm. Sup. (4), Vol. 21, (1988), pp. 413–454. Zbl0687.14043
  21. [21] [Rim01] R. Rimányi: “Thom polynomials, symmetries and incidences of singularities”, Inv. Math., Vol. 143, (2001), pp. 499–521. http://dx.doi.org/10.1007/s002220000113[Crossref] Zbl0985.32012
  22. [22] [Sti36] E. Stiefel: “Richtungsfelder und Fernparallelismus in Mannigfaltigkeiten”, Comm. Math. Helv., Vol. 8, (1936), pp. 3–51. Zbl62.0662.02
  23. [23] [Szű79] A. Szűcs: “Analogue of the Thom space for mapping with singularity of type ∑1”, Math. Sb. (N. S.), Vol. 108, (1979), pp. 438–456. 
  24. [24] [Vas88] V.A. Vassiliev: Lagrange and Legendre Characteristic Classes, Gordon and Breach, New York, 1988. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.