# On the existence of solutions for nonlinear impulsive periodic viable problems

Tiziana Cardinali; Raffaella Servadei

Open Mathematics (2004)

- Volume: 2, Issue: 4, page 573-583
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topTiziana Cardinali, and Raffaella Servadei. "On the existence of solutions for nonlinear impulsive periodic viable problems." Open Mathematics 2.4 (2004): 573-583. <http://eudml.org/doc/268906>.

@article{TizianaCardinali2004,

abstract = {In this paper we prove the existence of periodic solutions for nonlinear impulsive viable problems monitored by differential inclusions of the type x′(t)∈F(t,x(t))+G(t,x(t)). Our existence theorems extend, in a broad sense, some propositions proved in [10] and improve a result due to Hristova-Bainov in [13].},

author = {Tiziana Cardinali, Raffaella Servadei},

journal = {Open Mathematics},

keywords = {34A37; 34A60; 34B15},

language = {eng},

number = {4},

pages = {573-583},

title = {On the existence of solutions for nonlinear impulsive periodic viable problems},

url = {http://eudml.org/doc/268906},

volume = {2},

year = {2004},

}

TY - JOUR

AU - Tiziana Cardinali

AU - Raffaella Servadei

TI - On the existence of solutions for nonlinear impulsive periodic viable problems

JO - Open Mathematics

PY - 2004

VL - 2

IS - 4

SP - 573

EP - 583

AB - In this paper we prove the existence of periodic solutions for nonlinear impulsive viable problems monitored by differential inclusions of the type x′(t)∈F(t,x(t))+G(t,x(t)). Our existence theorems extend, in a broad sense, some propositions proved in [10] and improve a result due to Hristova-Bainov in [13].

LA - eng

KW - 34A37; 34A60; 34B15

UR - http://eudml.org/doc/268906

ER -

## References

top- [1] D.D. Bainov, V. Covachev: Impulsive differential equations with a small parameter, World Scientific, Series on Advances in Math. for Applied sciences, 1994.
- [2] D.D. Bainov, P.S. Simeonov: Systems with impulsive effect. Stability, theory and applications, Ellis Horwood Series in Maths and Appl., Ellis Horwood, Chicester, 1989.
- [3] D.D. Bainov, P.S. Simeonov: Impulsive differential equations. Asymptotic properties of the solutions, World Scientific, Series on Advances in Math. for Applied Sciences, 1995.
- [4] M. Benchohra, A. Boucherif: “Initial value problems for impulsive differential inclusions of first order”, Diff. Eqns. Dyn. Syst., Vol. 8, (2000), pp. 51–66. Zbl0988.34005
- [5] M. Benchohra, A. Boucherif: “An existence result for first order initial value problems for impulsive differential inclusions in Banach spaces”, Arch. Math., Vol. 36, (2000), pp. 159–169. Zbl1054.34099
- [6] M. Benchohra, A. Boucherif, J.J. Nieto: “On initial value problems for a class of first order impulsive differential inclusions”, Disc. Math. Diff. Incl. Control Optim., Vol. 21, (2001), pp. 159–171. Zbl1005.34007
- [7] M. Benchohra, J. Henderson, S.K. Ntouyas: “On a periodic boundary value problem for first order impulsive differential inclusions”, Dyn. Syst. Appl., Vol. 10, (2001), pp. 477–488. Zbl1019.34035
- [8] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahabi: “Existence results for impulsive lower semicontinuous differential inclusions”, Int. J. Pure Appl. Math., Vol. 1, (2002), pp. 431–443. Zbl1014.34005
- [9] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahabi: “Existence results for impulsive functional and neutral functional differential inclusions with lower semicontinuous right hand side”, Electron. J. Math. Phys. Sci., Vol. 1, (2002), pp. 72–91. Zbl1007.34076
- [10] T. Cardinali, R. Servadei: “Periodic solutions of nonlinear impulsive differential inclusions with constraints”, Proc. AMS, Vol. 132, (2004), pp. 2339–2349. http://dx.doi.org/10.1090/S0002-9939-04-07343-5 Zbl1069.34004
- [11] B.C. Dhage, A. Boucherif, S.K. Ntouyas: “On periodic boundary value problems of first-order perturbed impulsive differential inclusions”, Electron. J. Diff. Eqns., Vol. 84, (2004), pp. 1–9. Zbl1062.34008
- [12] M. Frigon, D. O’Regan: “Existence results for first order impulsive differential equations”, J. Math. Anal. Appl., Vol. 193, (1995), pp. 96–113. http://dx.doi.org/10.1006/jmaa.1995.1224
- [13] S.G. Hristova, D.D. Bainov: “Existence of periodic solutions of nonlinear systems of differential equations with impulse effect”, J. Math. Anal. Appl., Vol. 125, (1987), pp. 192–202. http://dx.doi.org/10.1016/0022-247X(87)90174-0
- [14] S. Hu, N.S. Papageorgiou: Handbook of multivalued analysis, Kluwer, Dordrecht, The Netherlands, 1997. Zbl0887.47001
- [15] V. Lakshmikantham, D.D. Bainov, P.S. Simeonov: Theory of impulsive differential equations, World Scientific, Singapore, 1989.
- [16] V.D. Mil’man, A.D. Myshkis: “On the stability of motion in the presence of impulses”, Siberian Math. J., Vol. 1, (1960), pp. 233–237.
- [17] A.M. Samoilenko, N.A. Perestyuk: “Differential equations with impulse effect”, Visca Skola, Kiev, 1987. [in Russian]
- [18] P.J. Watson: “Impulsive differential inclusions”, Nonlin. World, Vol. 4, (1997), pp. 395–402. Zbl0944.34007

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.