On initial value problems for a class of first order impulsive differential inclusions

Mouffak Benchohra; Abdelkader Boucherif; Juan J. Nieto

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2001)

  • Volume: 21, Issue: 2, page 159-171
  • ISSN: 1509-9407

Abstract

top
We investigate the existence of solutions to first order initial value problems for differential inclusions subject to impulsive effects. We shall rely on a fixed point theorem for condensing maps to prove our results.

How to cite

top

Mouffak Benchohra, Abdelkader Boucherif, and Juan J. Nieto. "On initial value problems for a class of first order impulsive differential inclusions." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 21.2 (2001): 159-171. <http://eudml.org/doc/271521>.

@article{MouffakBenchohra2001,
abstract = {We investigate the existence of solutions to first order initial value problems for differential inclusions subject to impulsive effects. We shall rely on a fixed point theorem for condensing maps to prove our results.},
author = {Mouffak Benchohra, Abdelkader Boucherif, Juan J. Nieto},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {impulsive initial value problem; set-valued map; condensing map; fixed point; solutions; first-order initial value problems; differential inclusions},
language = {eng},
number = {2},
pages = {159-171},
title = {On initial value problems for a class of first order impulsive differential inclusions},
url = {http://eudml.org/doc/271521},
volume = {21},
year = {2001},
}

TY - JOUR
AU - Mouffak Benchohra
AU - Abdelkader Boucherif
AU - Juan J. Nieto
TI - On initial value problems for a class of first order impulsive differential inclusions
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2001
VL - 21
IS - 2
SP - 159
EP - 171
AB - We investigate the existence of solutions to first order initial value problems for differential inclusions subject to impulsive effects. We shall rely on a fixed point theorem for condensing maps to prove our results.
LA - eng
KW - impulsive initial value problem; set-valued map; condensing map; fixed point; solutions; first-order initial value problems; differential inclusions
UR - http://eudml.org/doc/271521
ER -

References

top
  1. [1] J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston 1990. 
  2. [2] J.M. Ayerbe, T. Dominguez and G. Lopez-Acebo, Measure of Noncompactness in Metric Fixed Point Theory, Birkhäuser, Basel 1997. Zbl0885.47021
  3. [3] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York 1980. Zbl0441.47056
  4. [4] M. Benchohra and A. Boucherif, On first order initial value problems for impulsive differential inclusions in Banach Spaces, Dyn. Syst. Appl. 8 (1) (1999), 119-126. Zbl0929.34017
  5. [5] M. Benchohra and A. Boucherif, Initial Value Problems for Impulsive Differential Inclusions of First Order, Diff. Eq. and Dynamical Systems 8 (1) (2000), 51-66. Zbl0988.34005
  6. [6] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992. 
  7. [7] L. Erbe and W. Krawcewicz, Existence of solutions to boundary value problems for impulsive second order differential inclusions, Rockey Mountain J. Math. 22 (1992), 519-539. Zbl0784.34012
  8. [8] D. Franco, Problemas de frontera para ecuaciones diferenciales con impulsos, Ph.D Thesis, Univ. Santiago de Compostela (Spain), 2000 (in Spanish). 
  9. [9] M. Frigon and D. O'Regan, Existence results for first order impulsive differential equations, J. Math. Anal. Appl. 193, (1995), 96-113. Zbl0853.34011
  10. [10] M. Frigon and D. O'Regan, Boundary value problems for second order impulsive differential equations using set-valued maps, Rapport DMS-357, University of Montreal 1993. 
  11. [11] M. Frigon and D. O'Regan, First order impulsive initial and periodic value problems with variable moments, J. Math. Anal. Appl. 233 (1999), 730-739. Zbl0930.34016
  12. [12] M. Frigon, Application de la théorie de la transversalité topologique à des problèmes non linéaires pour des équations différentielles ordinaires, Dissertationes Math. 296 (1990), 1-79. 
  13. [13] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer, Dordrecht, Boston, London 1997. 
  14. [14] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore 1989. Zbl0719.34002
  15. [15] X. Liu, Nonlinear boundary value problems for first order impulsive differential equations, Appl. Anal. 36 (1990), 119-130. Zbl0671.34018
  16. [16] E. Liz and J.J. Nieto, Positive solutions of linear impulsive differential equations, Commun. Appl. Anal. 2 (4) (1998), 565-571. Zbl0903.34017
  17. [17] E. Liz, Problemas de frontera para nuevos tipos de ecuaciones diferenciales, Ph.D Thesis, Univ. Vigo (Spain) 1994 (in Spanish). 
  18. [18] M. Martelli, A Rothe's type theorem for non compact acyclic-valued maps, Boll. Un. Mat. Ital. 4 (3) (1975), 70-76. Zbl0314.47035
  19. [19] C. Pierson-Gorez, Problèmes aux Limites Pour des Equations Différentielles avec Impulsions, Ph.D. Thesis, Univ. Louvain-la-Neuve, Belgium 1993 (in French). Zbl0868.34007
  20. [20] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore 1995. 
  21. [21] D. Yujun and Z. Erxin, An application of coincidence degree continuation theorem in existence of solutions of impulsive differential equations, J. Math. Anal. Appl. 197 (1996), 875-889. Zbl0853.34010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.