On initial value problems for a class of first order impulsive differential inclusions
Mouffak Benchohra; Abdelkader Boucherif; Juan J. Nieto
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2001)
- Volume: 21, Issue: 2, page 159-171
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topMouffak Benchohra, Abdelkader Boucherif, and Juan J. Nieto. "On initial value problems for a class of first order impulsive differential inclusions." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 21.2 (2001): 159-171. <http://eudml.org/doc/271521>.
@article{MouffakBenchohra2001,
abstract = {We investigate the existence of solutions to first order initial value problems for differential inclusions subject to impulsive effects. We shall rely on a fixed point theorem for condensing maps to prove our results.},
author = {Mouffak Benchohra, Abdelkader Boucherif, Juan J. Nieto},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {impulsive initial value problem; set-valued map; condensing map; fixed point; solutions; first-order initial value problems; differential inclusions},
language = {eng},
number = {2},
pages = {159-171},
title = {On initial value problems for a class of first order impulsive differential inclusions},
url = {http://eudml.org/doc/271521},
volume = {21},
year = {2001},
}
TY - JOUR
AU - Mouffak Benchohra
AU - Abdelkader Boucherif
AU - Juan J. Nieto
TI - On initial value problems for a class of first order impulsive differential inclusions
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2001
VL - 21
IS - 2
SP - 159
EP - 171
AB - We investigate the existence of solutions to first order initial value problems for differential inclusions subject to impulsive effects. We shall rely on a fixed point theorem for condensing maps to prove our results.
LA - eng
KW - impulsive initial value problem; set-valued map; condensing map; fixed point; solutions; first-order initial value problems; differential inclusions
UR - http://eudml.org/doc/271521
ER -
References
top- [1] J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston 1990.
- [2] J.M. Ayerbe, T. Dominguez and G. Lopez-Acebo, Measure of Noncompactness in Metric Fixed Point Theory, Birkhäuser, Basel 1997. Zbl0885.47021
- [3] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York 1980. Zbl0441.47056
- [4] M. Benchohra and A. Boucherif, On first order initial value problems for impulsive differential inclusions in Banach Spaces, Dyn. Syst. Appl. 8 (1) (1999), 119-126. Zbl0929.34017
- [5] M. Benchohra and A. Boucherif, Initial Value Problems for Impulsive Differential Inclusions of First Order, Diff. Eq. and Dynamical Systems 8 (1) (2000), 51-66. Zbl0988.34005
- [6] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992.
- [7] L. Erbe and W. Krawcewicz, Existence of solutions to boundary value problems for impulsive second order differential inclusions, Rockey Mountain J. Math. 22 (1992), 519-539. Zbl0784.34012
- [8] D. Franco, Problemas de frontera para ecuaciones diferenciales con impulsos, Ph.D Thesis, Univ. Santiago de Compostela (Spain), 2000 (in Spanish).
- [9] M. Frigon and D. O'Regan, Existence results for first order impulsive differential equations, J. Math. Anal. Appl. 193, (1995), 96-113. Zbl0853.34011
- [10] M. Frigon and D. O'Regan, Boundary value problems for second order impulsive differential equations using set-valued maps, Rapport DMS-357, University of Montreal 1993.
- [11] M. Frigon and D. O'Regan, First order impulsive initial and periodic value problems with variable moments, J. Math. Anal. Appl. 233 (1999), 730-739. Zbl0930.34016
- [12] M. Frigon, Application de la théorie de la transversalité topologique à des problèmes non linéaires pour des équations différentielles ordinaires, Dissertationes Math. 296 (1990), 1-79.
- [13] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer, Dordrecht, Boston, London 1997.
- [14] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore 1989. Zbl0719.34002
- [15] X. Liu, Nonlinear boundary value problems for first order impulsive differential equations, Appl. Anal. 36 (1990), 119-130. Zbl0671.34018
- [16] E. Liz and J.J. Nieto, Positive solutions of linear impulsive differential equations, Commun. Appl. Anal. 2 (4) (1998), 565-571. Zbl0903.34017
- [17] E. Liz, Problemas de frontera para nuevos tipos de ecuaciones diferenciales, Ph.D Thesis, Univ. Vigo (Spain) 1994 (in Spanish).
- [18] M. Martelli, A Rothe's type theorem for non compact acyclic-valued maps, Boll. Un. Mat. Ital. 4 (3) (1975), 70-76. Zbl0314.47035
- [19] C. Pierson-Gorez, Problèmes aux Limites Pour des Equations Différentielles avec Impulsions, Ph.D. Thesis, Univ. Louvain-la-Neuve, Belgium 1993 (in French). Zbl0868.34007
- [20] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore 1995.
- [21] D. Yujun and Z. Erxin, An application of coincidence degree continuation theorem in existence of solutions of impulsive differential equations, J. Math. Anal. Appl. 197 (1996), 875-889. Zbl0853.34010
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.