On artin algebras with almost all indecomposable modules of projective or injective dimension at most one
Open Mathematics (2003)
- Volume: 1, Issue: 1, page 108-122
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Auslander, I. Reiten and S.O. Smalø, “Representation Theory of Artin Algebras”, Cambridge Studies in Advanced Mathematics, Vol. 36, Cambridge University Press, 1995. Zbl0834.16001
- [2] F. U. Coelho and M. A. Lanzilotta, Algebras with small homological dimension, Manuscripta Math. 100 (1999), 1–11. http://dx.doi.org/10.1007/s002290050191 Zbl0966.16001
- [3] F. U. Coelho and M. A. Lanzilotta, Weakly shod algebras, Preprint, Sao Paulo 2001. Zbl1062.16018
- [4] F. U. Coelho and A. Skowroński, On Auslander-Reiten components of quasi-tilted algebras, Fund. Math. 143 (1996), 67–82.
- [5] D. Happel and I. Reiten, Hereditary categories with tilting object over arbitrary base fields, J. Algebra, in press.
- [6] D. Happel and I. Reiten and S. O. Smalø, Tilting in abelian categories and quasi-tilted algebras, Memoirs Amer. Math. Soc., 575 (1996). Zbl0849.16011
- [7] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399–443. http://dx.doi.org/10.2307/1999116 Zbl0503.16024
- [8] O. Kerner, Stable components of tilted algebras, J. Algebra 162 (1991), 37–57. http://dx.doi.org/10.1016/0021-8693(91)90215-T
- [9] M. Kleiner, A. Skowroński and D. Zacharia, On endomorphism algebras with small homological dimensions, J. Math. Soc. Japan 54 (2002), 621–648. Zbl1035.16007
- [10] H. Lenzing and A. Skowroński, Quasi-tilted algebras of canonical type, Colloq. Math. 71 (1996), 161–181. Zbl0870.16007
- [11] S. Liu, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc. 47 (1993), 405–416. Zbl0818.16015
- [12] L. Peng and J. Xiao, On the number of D Tr-orbits containing directing modules, Proc. Amer. Math. Soc. 118 (1993), 753–756. http://dx.doi.org/10.2307/2160117 Zbl0787.16014
- [13] I. Reiten and A. Skowroński, Characterizations of algebras with small homological dimensions, Advances Math., in press. Zbl1051.16011
- [14] I. Reiten and A. Skowroński, Generalized double tilted algebras, J. Math. Soc. Japan, in press. Zbl1071.16011
- [15] C. M. Ringel, “Tame Algebras and Integral Quadratic Forms”, Lecture Notes in Math., Vol. 1099, Springer, 1984. Zbl0546.16013
- [16] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra, Logic and Appl. 4 (Gordon and Breach Science Publishers, Amsterdam 1992). Zbl0818.16009
- [17] A. Skowroński, Generalized standard components without oriented cycles, Osaka J. Math. 30 (1993), 515–527. Zbl0818.16017
- [18] A. Skowroński, Generalized standard Auslander-Reiten components, J. Math. Soc. Japan 46 (1994), 517–543. http://dx.doi.org/10.2969/jmsj/04630517 Zbl0828.16011
- [19] A. Skowroński, Regular Auslander-Reiten components containing directing modules, Proc. Amer. Math. Soc. 120 (1994), 19–26. http://dx.doi.org/10.2307/2160162 Zbl0831.16014
- [20] A. Skowroński, Minimal representation-infinite artin algebras, Math. Proc. Camb. Phil. Soc. 116 (1994), 229–243. http://dx.doi.org/10.1017/S0305004100072546 Zbl0822.16010
- [21] A. Skowroński, Directing modules and double tilted algebras, Bull. Polish. Acad. Sci., Ser. Math. 50 (2002), 77–87. Zbl1012.16015
- [22] A. Skowroński, S.O. Smalø and D. Zacharia, On the finiteness of the global dimension of Artin rings, J. Algebra 251 (2002), 475–478. http://dx.doi.org/10.1006/jabr.2001.9130