A regularity criterion for the Navier-Stokes equations in terms of the pressure gradient
Stefano Bosia; Monica Conti; Vittorino Pata
Open Mathematics (2014)
- Volume: 12, Issue: 7, page 1015-1025
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topStefano Bosia, Monica Conti, and Vittorino Pata. "A regularity criterion for the Navier-Stokes equations in terms of the pressure gradient." Open Mathematics 12.7 (2014): 1015-1025. <http://eudml.org/doc/268955>.
@article{StefanoBosia2014,
abstract = {The incompressible three-dimensional Navier-Stokes equations are considered. A new regularity criterion for weak solutions is established in terms of the pressure gradient.},
author = {Stefano Bosia, Monica Conti, Vittorino Pata},
journal = {Open Mathematics},
keywords = {Navier-Stokes equations; Pressure gradient; Regularity criteria; pressure gradient; regularity criteria},
language = {eng},
number = {7},
pages = {1015-1025},
title = {A regularity criterion for the Navier-Stokes equations in terms of the pressure gradient},
url = {http://eudml.org/doc/268955},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Stefano Bosia
AU - Monica Conti
AU - Vittorino Pata
TI - A regularity criterion for the Navier-Stokes equations in terms of the pressure gradient
JO - Open Mathematics
PY - 2014
VL - 12
IS - 7
SP - 1015
EP - 1025
AB - The incompressible three-dimensional Navier-Stokes equations are considered. A new regularity criterion for weak solutions is established in terms of the pressure gradient.
LA - eng
KW - Navier-Stokes equations; Pressure gradient; Regularity criteria; pressure gradient; regularity criteria
UR - http://eudml.org/doc/268955
ER -
References
top- [1] Beirão da Veiga H., Remarks on the smoothness of the L ∞(0, T, L 3) solutions of the 3-D Navier-Stokes equations, Portugal. Math., 1997, 54(4), 381–391 Zbl0896.35102
- [2] Berselli L.C., Galdi G.P., Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations, Proc. Amer. Math. Soc., 2002, 130(12), 3585–3595 http://dx.doi.org/10.1090/S0002-9939-02-06697-2 Zbl1075.35031
- [3] Bjorland C., Vasseur A., Weak in space, log in time improvement of the Ladyženskaja-Prodi-Serrin criteria, J. Math. Fluid Mech., 2011, 13(2), 259–269 http://dx.doi.org/10.1007/s00021-009-0020-3 Zbl1270.35334
- [4] Caffarelli L., Kohn R., Nirenberg L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 1982, 35(6), 771–831 http://dx.doi.org/10.1002/cpa.3160350604 Zbl0509.35067
- [5] Cai Z., Fan J., Zhai J., Regularity criteria in weak spaces for 3-dimensional Navier-Stokes equations in terms of the pressure, Differential Integral Equations, 2010, 23(11–12), 1023–1033 Zbl1240.35380
- [6] Chan C.H., Vasseur A., Log improvement of the Prodi-Serrin criteria for Navier-Stokes equations, Methods Appl. Anal., 2007, 14(2), 197–212 Zbl1198.35175
- [7] Escauriaza L., Seregin G., Šverák V., L 3,∞-solutions of the Navier-Stokes equations and backward uniqueness, Russian Math. Surveys, 2003, 58(2), 211–250 http://dx.doi.org/10.1070/RM2003v058n02ABEH000609 Zbl1064.35134
- [8] Fan J., Jiang S., Ni G., On regularity criteria for the n-dimensional Navier-Stokes equations in terms of the pressure, J. Differential Equations, 2008, 244(11), 2963–2979 http://dx.doi.org/10.1016/j.jde.2008.02.030 Zbl1143.35081
- [9] Giga Y., Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes equations, J. Differential Equations, 1986, 62(2), 186–212 http://dx.doi.org/10.1016/0022-0396(86)90096-3 Zbl0577.35058
- [10] Hopf E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 1951, 4, 213–231 http://dx.doi.org/10.1002/mana.3210040121 Zbl0042.10604
- [11] Leray J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 1934, 63, 193–248 http://dx.doi.org/10.1007/BF02547354
- [12] Montgomery-Smith S., Conditions implying regularity of the three dimensional Navier-Stokes equation, Appl. Math., 2005, 50(5), 451–464 http://dx.doi.org/10.1007/s10492-005-0032-0 Zbl1099.35086
- [13] Pata V., On the regularity of solutions to the Navier-Stokes equations, Commun. Pure Appl. Anal., 2012, 11(2), 747–761 http://dx.doi.org/10.3934/cpaa.2012.11.747 Zbl1278.35182
- [14] Prodi G., Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 1959, 48, 173–182 http://dx.doi.org/10.1007/BF02410664
- [15] Serrin J., On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 1962, 9, 187–195 http://dx.doi.org/10.1007/BF00253344 Zbl0106.18302
- [16] Sohr H., A regularity class for the Navier-Stokes equations in Lorentz spaces, J. Evol. Equ., 2001, 1(4), 441–467 http://dx.doi.org/10.1007/PL00001382
- [17] Struwe M., On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 1988, 41(4), 437–458 http://dx.doi.org/10.1002/cpa.3160410404 Zbl0632.76034
- [18] Struwe M., On a Serrin-type regularity criterion for the Navier-Stokes equations in terms of the pressure, J. Math. Fluid Mech., 2007, 9(2), 235–242 http://dx.doi.org/10.1007/s00021-005-0198-y Zbl1131.35060
- [19] Suzuki T., Regularity criteria of weak solutions in terms of the pressure in Lorentz spaces to the Navier-Stokes equations, J. Math. Fluid Mech., 2012, 14(4), 653–660 http://dx.doi.org/10.1007/s00021-012-0098-x Zbl1256.35066
- [20] Takahashi S., On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscripta Math., 1990, 69(3), 237–254 http://dx.doi.org/10.1007/BF02567922 Zbl0718.35022
- [21] Talenti G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 1976, 110, 353–372 http://dx.doi.org/10.1007/BF02418013 Zbl0353.46018
- [22] Temam R., Navier-Stokes Equations, AMS Chelsea, Providence, 2001
- [23] Zhou Y., On regularity criteria in terms of pressure for the Navier-Stokes equations in ℝ3, Proc. Amer. Math. Soc., 2006, 134(1), 149–156 http://dx.doi.org/10.1090/S0002-9939-05-08312-7 Zbl1075.35044
- [24] Zhou Y., On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in ℝN, Z. Angew. Math. Phys., 2006, 57(3), 384–392 http://dx.doi.org/10.1007/s00033-005-0021-x Zbl1099.35091
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.