A regularity criterion for the Navier-Stokes equations in terms of the pressure gradient

Stefano Bosia; Monica Conti; Vittorino Pata

Open Mathematics (2014)

  • Volume: 12, Issue: 7, page 1015-1025
  • ISSN: 2391-5455

Abstract

top
The incompressible three-dimensional Navier-Stokes equations are considered. A new regularity criterion for weak solutions is established in terms of the pressure gradient.

How to cite

top

Stefano Bosia, Monica Conti, and Vittorino Pata. "A regularity criterion for the Navier-Stokes equations in terms of the pressure gradient." Open Mathematics 12.7 (2014): 1015-1025. <http://eudml.org/doc/268955>.

@article{StefanoBosia2014,
abstract = {The incompressible three-dimensional Navier-Stokes equations are considered. A new regularity criterion for weak solutions is established in terms of the pressure gradient.},
author = {Stefano Bosia, Monica Conti, Vittorino Pata},
journal = {Open Mathematics},
keywords = {Navier-Stokes equations; Pressure gradient; Regularity criteria; pressure gradient; regularity criteria},
language = {eng},
number = {7},
pages = {1015-1025},
title = {A regularity criterion for the Navier-Stokes equations in terms of the pressure gradient},
url = {http://eudml.org/doc/268955},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Stefano Bosia
AU - Monica Conti
AU - Vittorino Pata
TI - A regularity criterion for the Navier-Stokes equations in terms of the pressure gradient
JO - Open Mathematics
PY - 2014
VL - 12
IS - 7
SP - 1015
EP - 1025
AB - The incompressible three-dimensional Navier-Stokes equations are considered. A new regularity criterion for weak solutions is established in terms of the pressure gradient.
LA - eng
KW - Navier-Stokes equations; Pressure gradient; Regularity criteria; pressure gradient; regularity criteria
UR - http://eudml.org/doc/268955
ER -

References

top
  1. [1] Beirão da Veiga H., Remarks on the smoothness of the L ∞(0, T, L 3) solutions of the 3-D Navier-Stokes equations, Portugal. Math., 1997, 54(4), 381–391 Zbl0896.35102
  2. [2] Berselli L.C., Galdi G.P., Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations, Proc. Amer. Math. Soc., 2002, 130(12), 3585–3595 http://dx.doi.org/10.1090/S0002-9939-02-06697-2 Zbl1075.35031
  3. [3] Bjorland C., Vasseur A., Weak in space, log in time improvement of the Ladyženskaja-Prodi-Serrin criteria, J. Math. Fluid Mech., 2011, 13(2), 259–269 http://dx.doi.org/10.1007/s00021-009-0020-3 Zbl1270.35334
  4. [4] Caffarelli L., Kohn R., Nirenberg L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 1982, 35(6), 771–831 http://dx.doi.org/10.1002/cpa.3160350604 Zbl0509.35067
  5. [5] Cai Z., Fan J., Zhai J., Regularity criteria in weak spaces for 3-dimensional Navier-Stokes equations in terms of the pressure, Differential Integral Equations, 2010, 23(11–12), 1023–1033 Zbl1240.35380
  6. [6] Chan C.H., Vasseur A., Log improvement of the Prodi-Serrin criteria for Navier-Stokes equations, Methods Appl. Anal., 2007, 14(2), 197–212 Zbl1198.35175
  7. [7] Escauriaza L., Seregin G., Šverák V., L 3,∞-solutions of the Navier-Stokes equations and backward uniqueness, Russian Math. Surveys, 2003, 58(2), 211–250 http://dx.doi.org/10.1070/RM2003v058n02ABEH000609 Zbl1064.35134
  8. [8] Fan J., Jiang S., Ni G., On regularity criteria for the n-dimensional Navier-Stokes equations in terms of the pressure, J. Differential Equations, 2008, 244(11), 2963–2979 http://dx.doi.org/10.1016/j.jde.2008.02.030 Zbl1143.35081
  9. [9] Giga Y., Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes equations, J. Differential Equations, 1986, 62(2), 186–212 http://dx.doi.org/10.1016/0022-0396(86)90096-3 Zbl0577.35058
  10. [10] Hopf E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 1951, 4, 213–231 http://dx.doi.org/10.1002/mana.3210040121 Zbl0042.10604
  11. [11] Leray J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 1934, 63, 193–248 http://dx.doi.org/10.1007/BF02547354 
  12. [12] Montgomery-Smith S., Conditions implying regularity of the three dimensional Navier-Stokes equation, Appl. Math., 2005, 50(5), 451–464 http://dx.doi.org/10.1007/s10492-005-0032-0 Zbl1099.35086
  13. [13] Pata V., On the regularity of solutions to the Navier-Stokes equations, Commun. Pure Appl. Anal., 2012, 11(2), 747–761 http://dx.doi.org/10.3934/cpaa.2012.11.747 Zbl1278.35182
  14. [14] Prodi G., Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 1959, 48, 173–182 http://dx.doi.org/10.1007/BF02410664 
  15. [15] Serrin J., On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 1962, 9, 187–195 http://dx.doi.org/10.1007/BF00253344 Zbl0106.18302
  16. [16] Sohr H., A regularity class for the Navier-Stokes equations in Lorentz spaces, J. Evol. Equ., 2001, 1(4), 441–467 http://dx.doi.org/10.1007/PL00001382 
  17. [17] Struwe M., On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 1988, 41(4), 437–458 http://dx.doi.org/10.1002/cpa.3160410404 Zbl0632.76034
  18. [18] Struwe M., On a Serrin-type regularity criterion for the Navier-Stokes equations in terms of the pressure, J. Math. Fluid Mech., 2007, 9(2), 235–242 http://dx.doi.org/10.1007/s00021-005-0198-y Zbl1131.35060
  19. [19] Suzuki T., Regularity criteria of weak solutions in terms of the pressure in Lorentz spaces to the Navier-Stokes equations, J. Math. Fluid Mech., 2012, 14(4), 653–660 http://dx.doi.org/10.1007/s00021-012-0098-x Zbl1256.35066
  20. [20] Takahashi S., On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscripta Math., 1990, 69(3), 237–254 http://dx.doi.org/10.1007/BF02567922 Zbl0718.35022
  21. [21] Talenti G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 1976, 110, 353–372 http://dx.doi.org/10.1007/BF02418013 Zbl0353.46018
  22. [22] Temam R., Navier-Stokes Equations, AMS Chelsea, Providence, 2001 
  23. [23] Zhou Y., On regularity criteria in terms of pressure for the Navier-Stokes equations in ℝ3, Proc. Amer. Math. Soc., 2006, 134(1), 149–156 http://dx.doi.org/10.1090/S0002-9939-05-08312-7 Zbl1075.35044
  24. [24] Zhou Y., On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in ℝN, Z. Angew. Math. Phys., 2006, 57(3), 384–392 http://dx.doi.org/10.1007/s00033-005-0021-x Zbl1099.35091

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.