A recursion operator for the universal hierarchy equation via Cartan’s method of equivalence

Oleg Morozov

Open Mathematics (2014)

  • Volume: 12, Issue: 2, page 271-283
  • ISSN: 2391-5455

Abstract

top
We apply Cartan’s method of equivalence to find a Bäcklund autotransformation for the tangent covering of the universal hierarchy equation. The transformation provides a recursion operator for symmetries of this equation.

How to cite

top

Oleg Morozov. "A recursion operator for the universal hierarchy equation via Cartan’s method of equivalence." Open Mathematics 12.2 (2014): 271-283. <http://eudml.org/doc/268966>.

@article{OlegMorozov2014,
abstract = {We apply Cartan’s method of equivalence to find a Bäcklund autotransformation for the tangent covering of the universal hierarchy equation. The transformation provides a recursion operator for symmetries of this equation.},
author = {Oleg Morozov},
journal = {Open Mathematics},
keywords = {Lie pseudo-groups; Maurer-Cartan forms; Symmetries of differential equations; Differential coverings; Recursion operators; symmetries of differential equations; differential coverings; recursion operators},
language = {eng},
number = {2},
pages = {271-283},
title = {A recursion operator for the universal hierarchy equation via Cartan’s method of equivalence},
url = {http://eudml.org/doc/268966},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Oleg Morozov
TI - A recursion operator for the universal hierarchy equation via Cartan’s method of equivalence
JO - Open Mathematics
PY - 2014
VL - 12
IS - 2
SP - 271
EP - 283
AB - We apply Cartan’s method of equivalence to find a Bäcklund autotransformation for the tangent covering of the universal hierarchy equation. The transformation provides a recursion operator for symmetries of this equation.
LA - eng
KW - Lie pseudo-groups; Maurer-Cartan forms; Symmetries of differential equations; Differential coverings; Recursion operators; symmetries of differential equations; differential coverings; recursion operators
UR - http://eudml.org/doc/268966
ER -

References

top
  1. [1] Bluman G.W., Cole J.D., Similarity Methods for Differential Equations, Appl. Math. Sci., 13, Springer, New York-Heidelberg, 1974 http://dx.doi.org/10.1007/978-1-4612-6394-4 Zbl0292.35001
  2. [2] Bocharov A.V., Chetverikov V.N., Duzhin S.V., Khor’kova N.G., Krasil’shchik I.S., Samokhin A.V., Torkhov Yu.N., Verbovetsky A.M., Vinogradov A.M., Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Transl. Math. Monogr., 182, American Mathematical Society, Providence, 1999 
  3. [3] Bryant R.L., Griffiths Ph.A., Characteristic cohomology of differential systems II: Conservation laws for a class of parabolic equations, Duke Math. J., 1995, 78(3), 531–676 http://dx.doi.org/10.1215/S0012-7094-95-07824-7 Zbl0853.58005
  4. [4] Cartan É., Sur la structure des groupes infinis de transformations, In: OEuvres Complètes, 2(2), Gauthier-Villars, Paris, 1953, 571–714 
  5. [5] Cartan É., Les sous-groupes des groupes continus de transformations, In: OEuvres Complètes, 2(2), Gauthier-Villars, Paris, 1953, 719–856 
  6. [6] Cartan É., Les problèmes d’équivalence, In: OEuvres Complètes, 2(2), Gauthier-Villars, Paris, 1953, 1311–1334 
  7. [7] Cartan É., La structure des groupes infinis, In: OEuvres Complètes, 2(2), Gauthier-Villars, Paris, 1953, 1335–1384 
  8. [8] Fels M., Olver P.J., Moving coframes: I. A practical algorithm, Acta Appl. Math., 1998, 51(2), 161–213 http://dx.doi.org/10.1023/A:1005878210297 Zbl0937.53012
  9. [9] Fokas A.S., Symmetries and integrability, Stud. Appl. Math., 1987, 77(3), 253–299 Zbl0639.35075
  10. [10] Fokas A.S., Santini P.M., The recursion operator of the Kadomtsev-Petviashvili equation and the squared eigenfunctions of the Schrödinger operator, Stud. Appl. Math., 1986, 75(2), 179–185 Zbl0613.35073
  11. [11] Fokas A.S., Santini P.M., Recursion operators and bi-Hamiltonian structures in multidimensions. II, Comm. Math. Phys., 1988, 116(3), 449–474 http://dx.doi.org/10.1007/BF01229203 Zbl0706.35129
  12. [12] Fuchssteiner B., Application of hereditary symmetries to nonlinear evolution equations, Nonlinear Anal., 1979, 3(6), 849–862 http://dx.doi.org/10.1016/0362-546X(79)90052-X 
  13. [13] Gardner R.B., The Method of Equivalence and its Applications, CBMS-NSF Regional Conf. Ser. in Appl. Math., 58, SIAM, Philadelphia, 1989 
  14. [14] Gürses M., Karasu A., Sokolov V.V., On construction of recursion operators from Lax representation, J. Math. Phys., 1999, 40(12), 6473–6490 http://dx.doi.org/10.1063/1.533102 Zbl0977.37038
  15. [15] Guthrie G.A., Recursion operators and non-local symmetries, Proc. Roy. Soc. London Ser. A, 1994, 446(1926), 107–114 http://dx.doi.org/10.1098/rspa.1994.0094 Zbl0816.47056
  16. [16] Ibragimov N.H., Transformation Groups Applied to Mathematical Physics, Math. Appl. (Soviet Ser.), Reidel, Dordrecht, 1985 
  17. [17] Kamran N., Contributions to the Study of the Equivalence Problem of Élie Cartan and its Applications to Partial and Ordinary Differential Equations, Acad. Roy. Belg. Cl. Sci. Mém Collect. 8, 45(7), Brussls, 1989 Zbl0721.58001
  18. [18] Krasil’shchik I.S., Kersten P.H.M., Deformations and recursion operators for evolution equations, In: Geometry in Partial Differential Equations, World Scientific, River Edge, 1994, 114–154 http://dx.doi.org/10.1142/9789814354394_0008 Zbl0878.35106
  19. [19] Krasil’shchik I.S., Kersten P.H.M., Graded differential equations and their deformations: a computational theory for recursion operators, Acta Appl. Math., 1995, 41(1–3), 167–191 http://dx.doi.org/10.1007/BF00996112 
  20. [20] Krasil’shchik I.S., Lychagin V.V., Vinogradov A.M., Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Adv. Stud. Contemp. Math., 1, Gordon and Breach, New York, 1986 
  21. [21] Krasil’shchik J., Verbovetsky A., Geometry of jet spaces and integrable systems, J. Geom. Phys., 2011, 61(9), 1633–1674 http://dx.doi.org/10.1016/j.geomphys.2010.10.012 Zbl1230.58005
  22. [22] Krasil’shchik I.S., Verbovetsky A.M., Vitolo R., A unified approach to computation of integrable structures, Acta Appl. Math., 2012, 120, 199–218 http://dx.doi.org/10.1007/s10440-012-9699-x Zbl1284.37052
  23. [23] Krasil’shchik I.S., Vinogradov A.M., Nonlocal symmetries and the theory of coverings, Acta Appl. Math., 1984, 2(1), 79–86 http://dx.doi.org/10.1007/BF01405492 
  24. [24] Martínez Alonso L., Shabat A.B., Energy-dependent potentials revisited: a universal hierarchy of hydrodynamic type, Phys. Lett. A, 2002, 299(4), 359–365 http://dx.doi.org/10.1016/S0375-9601(02)00662-X Zbl0996.37072
  25. [25] Martínez Alonso L., Shabat A.B., Hydrodynamic reductions and solutions of the universal hierarchy, Theoret. and Math. Phys., 2004, 140(2), 1073–1085 http://dx.doi.org/10.1023/B:TAMP.0000036538.41884.57 Zbl1178.37067
  26. [26] Marvan M., Another look on recursion operators, In: Differential Geometry and Applications, Brno, August 28–September 1, 1995, Masaryk University, Brno, 1996, 393–402 Zbl0870.58106
  27. [27] Marvan M., Recursion operator for vacuum Einstein equations with symmetries, Symmetry in Nonlinear Mathematical Physics, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 50(1,2,3), Natsīonal Akad. Nauk Ukraïni, Kiev, 2004, 179–183 Zbl1097.83507
  28. [28] Marvan M., Reducibility of zero curvature representations with application to recursion operators, Acta Appl. Math., 2004, 83(1–2), 39–68 http://dx.doi.org/10.1023/B:ACAP.0000035588.67805.0b Zbl1063.37066
  29. [29] Marvan M., On the spectral parameter problem, Acta Appl. Math., 2010, 109(1), 239–255 http://dx.doi.org/10.1007/s10440-009-9450-4 Zbl1198.37094
  30. [30] Marvan M., Pobořil M., A recursion operator for the intrinsic generalized sine-Gordon equation, J. Math. Sci. (N.Y.), 2008, 151(4), 3151–3158 http://dx.doi.org/10.1007/s10958-008-9024-4 Zbl1149.37324
  31. [31] Marvan M., Sergyeyev A., Recursion operator for the stationary Nizhnik-Veselov-Novikov equation, J. Phys. A, 2003, 36(5), L87–L92 http://dx.doi.org/10.1088/0305-4470/36/5/102 Zbl1039.37055
  32. [32] Marvan M., Sergyeyev A., Recursion operators for dispersionless integrable systems in any dimension, Inverse Problems, 2012, 28(2), #025011 http://dx.doi.org/10.1088/0266-5611/28/2/025011 Zbl1234.35314
  33. [33] Morozov O.I., Moving coframes and symmetries of differential equations, J. Phys. A, 2002, 35(12), 2965–2977 http://dx.doi.org/10.1088/0305-4470/35/12/317 Zbl1040.35003
  34. [34] Morozov O.I., The contact-equivalence problem for linear hyperbolic equations, J. Math. Sci. (N.Y.), 2006, 135(1), 2680–2694 http://dx.doi.org/10.1007/s10958-006-0138-2 Zbl1112.35011
  35. [35] Morozov O.I., Contact integrable extensions of symmetry pseudo-groups and coverings of (2+1) dispersionless integrable equations, J. Geom. Phys., 2009, 59(11), 1461–1475 http://dx.doi.org/10.1016/j.geomphys.2009.07.009 Zbl1186.58023
  36. [36] Olver P.J., Evolution equations possessing infinitely many symmetries, J. Math. Phys., 1977, 18(6), 1212–1215 http://dx.doi.org/10.1063/1.523393 Zbl0348.35024
  37. [37] Olver P.J., Applications of Lie Groups to Differential Equations, 2nd ed., Grad. Texts in Math., 107, Springer, New York, 1993 http://dx.doi.org/10.1007/978-1-4612-4350-2 
  38. [38] Olver P.J., Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995 http://dx.doi.org/10.1017/CBO9780511609565 
  39. [39] Papachristou C.J., Potential symmetries for self-dual gauge fields, Phys. Lett. A, 1990, 145(5), 250–254 http://dx.doi.org/10.1016/0375-9601(90)90359-V 
  40. [40] Papachristou C.J., Harrison B.K., Bäcklund-transformation-related recursion operators: application to self-dual Yang-Mills equation, J. Nonlinear Math. Phys., 2010, 17(1), 35–49 http://dx.doi.org/10.1142/S1402925110000581 Zbl1190.35190
  41. [41] Pavlov M.V., Integrable hydrodynamic chains, J. Math. Phys., 2003, 44(9), 4134–4156 http://dx.doi.org/10.1063/1.1597946 Zbl1062.37078
  42. [42] Sanders J.A., Wang J.P., On recursion operators, Phys. D, 2001, 149(1–2), 1–10 http://dx.doi.org/10.1016/S0167-2789(00)00188-3 Zbl0972.35137
  43. [43] Santini P.M., Fokas A.S., Recursion operators and bi-Hamiltonian structures in multidimensions. I, Comm. Math. Phys., 1988, 115(3), 375–419 http://dx.doi.org/10.1007/BF01218017 Zbl0674.35074
  44. [44] Sergyeyev A., On recursion operators and nonlocal symmetries of evolution equations, In: Proceedings of the Seminar on Differential Geometry, Opava, 2000, Math. Publ., 2, Silesian University at Opava, Opava, 2000, 159–173 Zbl1096.37503
  45. [45] Stormark O., Lie’s Structural Approach to PDE Systems, Encyclopedia Math. Appl., 80, Cambridge University Press, Cambridge, 2000 http://dx.doi.org/10.1017/CBO9780511569456 Zbl0959.35004
  46. [46] Vasilieva M.V., Structure of Infinite Lie Groups of Transformations, Moskov. Gosudartv. Ped. Inst., Moscow, 1972 (in Russian) 
  47. [47] Vinogradov A.M., Local symmetries and conservation laws, Acta Appl. Math., 1984, 2(1), 21–78 http://dx.doi.org/10.1007/BF01405491 Zbl0534.58005
  48. [48] Wahlquist H.D., Estabrook F.B., Prolongation structures of nonlinear evolution equations, J. Math. Phys., 1975, 16, 1–7 http://dx.doi.org/10.1063/1.522396 Zbl0298.35012
  49. [49] Wang J.P., A list of 1+1 dimensional integrable equations and their properties, J. Nonlinear Math. Phys., 2002, 9(Suppl. 1), 213–233 http://dx.doi.org/10.2991/jnmp.2002.9.s1.18 
  50. [50] Zakharov V.E., Konopel’chenko B.G., On the theory of recursion operator, Commun. Math. Phys., 1984, 94(4), 483–509 http://dx.doi.org/10.1007/BF01403883 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.