A recursion operator for the universal hierarchy equation via Cartan’s method of equivalence
Open Mathematics (2014)
- Volume: 12, Issue: 2, page 271-283
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topOleg Morozov. "A recursion operator for the universal hierarchy equation via Cartan’s method of equivalence." Open Mathematics 12.2 (2014): 271-283. <http://eudml.org/doc/268966>.
@article{OlegMorozov2014,
abstract = {We apply Cartan’s method of equivalence to find a Bäcklund autotransformation for the tangent covering of the universal hierarchy equation. The transformation provides a recursion operator for symmetries of this equation.},
author = {Oleg Morozov},
journal = {Open Mathematics},
keywords = {Lie pseudo-groups; Maurer-Cartan forms; Symmetries of differential equations; Differential coverings; Recursion operators; symmetries of differential equations; differential coverings; recursion operators},
language = {eng},
number = {2},
pages = {271-283},
title = {A recursion operator for the universal hierarchy equation via Cartan’s method of equivalence},
url = {http://eudml.org/doc/268966},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Oleg Morozov
TI - A recursion operator for the universal hierarchy equation via Cartan’s method of equivalence
JO - Open Mathematics
PY - 2014
VL - 12
IS - 2
SP - 271
EP - 283
AB - We apply Cartan’s method of equivalence to find a Bäcklund autotransformation for the tangent covering of the universal hierarchy equation. The transformation provides a recursion operator for symmetries of this equation.
LA - eng
KW - Lie pseudo-groups; Maurer-Cartan forms; Symmetries of differential equations; Differential coverings; Recursion operators; symmetries of differential equations; differential coverings; recursion operators
UR - http://eudml.org/doc/268966
ER -
References
top- [1] Bluman G.W., Cole J.D., Similarity Methods for Differential Equations, Appl. Math. Sci., 13, Springer, New York-Heidelberg, 1974 http://dx.doi.org/10.1007/978-1-4612-6394-4 Zbl0292.35001
- [2] Bocharov A.V., Chetverikov V.N., Duzhin S.V., Khor’kova N.G., Krasil’shchik I.S., Samokhin A.V., Torkhov Yu.N., Verbovetsky A.M., Vinogradov A.M., Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Transl. Math. Monogr., 182, American Mathematical Society, Providence, 1999
- [3] Bryant R.L., Griffiths Ph.A., Characteristic cohomology of differential systems II: Conservation laws for a class of parabolic equations, Duke Math. J., 1995, 78(3), 531–676 http://dx.doi.org/10.1215/S0012-7094-95-07824-7 Zbl0853.58005
- [4] Cartan É., Sur la structure des groupes infinis de transformations, In: OEuvres Complètes, 2(2), Gauthier-Villars, Paris, 1953, 571–714
- [5] Cartan É., Les sous-groupes des groupes continus de transformations, In: OEuvres Complètes, 2(2), Gauthier-Villars, Paris, 1953, 719–856
- [6] Cartan É., Les problèmes d’équivalence, In: OEuvres Complètes, 2(2), Gauthier-Villars, Paris, 1953, 1311–1334
- [7] Cartan É., La structure des groupes infinis, In: OEuvres Complètes, 2(2), Gauthier-Villars, Paris, 1953, 1335–1384
- [8] Fels M., Olver P.J., Moving coframes: I. A practical algorithm, Acta Appl. Math., 1998, 51(2), 161–213 http://dx.doi.org/10.1023/A:1005878210297 Zbl0937.53012
- [9] Fokas A.S., Symmetries and integrability, Stud. Appl. Math., 1987, 77(3), 253–299 Zbl0639.35075
- [10] Fokas A.S., Santini P.M., The recursion operator of the Kadomtsev-Petviashvili equation and the squared eigenfunctions of the Schrödinger operator, Stud. Appl. Math., 1986, 75(2), 179–185 Zbl0613.35073
- [11] Fokas A.S., Santini P.M., Recursion operators and bi-Hamiltonian structures in multidimensions. II, Comm. Math. Phys., 1988, 116(3), 449–474 http://dx.doi.org/10.1007/BF01229203 Zbl0706.35129
- [12] Fuchssteiner B., Application of hereditary symmetries to nonlinear evolution equations, Nonlinear Anal., 1979, 3(6), 849–862 http://dx.doi.org/10.1016/0362-546X(79)90052-X
- [13] Gardner R.B., The Method of Equivalence and its Applications, CBMS-NSF Regional Conf. Ser. in Appl. Math., 58, SIAM, Philadelphia, 1989
- [14] Gürses M., Karasu A., Sokolov V.V., On construction of recursion operators from Lax representation, J. Math. Phys., 1999, 40(12), 6473–6490 http://dx.doi.org/10.1063/1.533102 Zbl0977.37038
- [15] Guthrie G.A., Recursion operators and non-local symmetries, Proc. Roy. Soc. London Ser. A, 1994, 446(1926), 107–114 http://dx.doi.org/10.1098/rspa.1994.0094 Zbl0816.47056
- [16] Ibragimov N.H., Transformation Groups Applied to Mathematical Physics, Math. Appl. (Soviet Ser.), Reidel, Dordrecht, 1985
- [17] Kamran N., Contributions to the Study of the Equivalence Problem of Élie Cartan and its Applications to Partial and Ordinary Differential Equations, Acad. Roy. Belg. Cl. Sci. Mém Collect. 8, 45(7), Brussls, 1989 Zbl0721.58001
- [18] Krasil’shchik I.S., Kersten P.H.M., Deformations and recursion operators for evolution equations, In: Geometry in Partial Differential Equations, World Scientific, River Edge, 1994, 114–154 http://dx.doi.org/10.1142/9789814354394_0008 Zbl0878.35106
- [19] Krasil’shchik I.S., Kersten P.H.M., Graded differential equations and their deformations: a computational theory for recursion operators, Acta Appl. Math., 1995, 41(1–3), 167–191 http://dx.doi.org/10.1007/BF00996112
- [20] Krasil’shchik I.S., Lychagin V.V., Vinogradov A.M., Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Adv. Stud. Contemp. Math., 1, Gordon and Breach, New York, 1986
- [21] Krasil’shchik J., Verbovetsky A., Geometry of jet spaces and integrable systems, J. Geom. Phys., 2011, 61(9), 1633–1674 http://dx.doi.org/10.1016/j.geomphys.2010.10.012 Zbl1230.58005
- [22] Krasil’shchik I.S., Verbovetsky A.M., Vitolo R., A unified approach to computation of integrable structures, Acta Appl. Math., 2012, 120, 199–218 http://dx.doi.org/10.1007/s10440-012-9699-x Zbl1284.37052
- [23] Krasil’shchik I.S., Vinogradov A.M., Nonlocal symmetries and the theory of coverings, Acta Appl. Math., 1984, 2(1), 79–86 http://dx.doi.org/10.1007/BF01405492
- [24] Martínez Alonso L., Shabat A.B., Energy-dependent potentials revisited: a universal hierarchy of hydrodynamic type, Phys. Lett. A, 2002, 299(4), 359–365 http://dx.doi.org/10.1016/S0375-9601(02)00662-X Zbl0996.37072
- [25] Martínez Alonso L., Shabat A.B., Hydrodynamic reductions and solutions of the universal hierarchy, Theoret. and Math. Phys., 2004, 140(2), 1073–1085 http://dx.doi.org/10.1023/B:TAMP.0000036538.41884.57 Zbl1178.37067
- [26] Marvan M., Another look on recursion operators, In: Differential Geometry and Applications, Brno, August 28–September 1, 1995, Masaryk University, Brno, 1996, 393–402 Zbl0870.58106
- [27] Marvan M., Recursion operator for vacuum Einstein equations with symmetries, Symmetry in Nonlinear Mathematical Physics, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 50(1,2,3), Natsīonal Akad. Nauk Ukraïni, Kiev, 2004, 179–183 Zbl1097.83507
- [28] Marvan M., Reducibility of zero curvature representations with application to recursion operators, Acta Appl. Math., 2004, 83(1–2), 39–68 http://dx.doi.org/10.1023/B:ACAP.0000035588.67805.0b Zbl1063.37066
- [29] Marvan M., On the spectral parameter problem, Acta Appl. Math., 2010, 109(1), 239–255 http://dx.doi.org/10.1007/s10440-009-9450-4 Zbl1198.37094
- [30] Marvan M., Pobořil M., A recursion operator for the intrinsic generalized sine-Gordon equation, J. Math. Sci. (N.Y.), 2008, 151(4), 3151–3158 http://dx.doi.org/10.1007/s10958-008-9024-4 Zbl1149.37324
- [31] Marvan M., Sergyeyev A., Recursion operator for the stationary Nizhnik-Veselov-Novikov equation, J. Phys. A, 2003, 36(5), L87–L92 http://dx.doi.org/10.1088/0305-4470/36/5/102 Zbl1039.37055
- [32] Marvan M., Sergyeyev A., Recursion operators for dispersionless integrable systems in any dimension, Inverse Problems, 2012, 28(2), #025011 http://dx.doi.org/10.1088/0266-5611/28/2/025011 Zbl1234.35314
- [33] Morozov O.I., Moving coframes and symmetries of differential equations, J. Phys. A, 2002, 35(12), 2965–2977 http://dx.doi.org/10.1088/0305-4470/35/12/317 Zbl1040.35003
- [34] Morozov O.I., The contact-equivalence problem for linear hyperbolic equations, J. Math. Sci. (N.Y.), 2006, 135(1), 2680–2694 http://dx.doi.org/10.1007/s10958-006-0138-2 Zbl1112.35011
- [35] Morozov O.I., Contact integrable extensions of symmetry pseudo-groups and coverings of (2+1) dispersionless integrable equations, J. Geom. Phys., 2009, 59(11), 1461–1475 http://dx.doi.org/10.1016/j.geomphys.2009.07.009 Zbl1186.58023
- [36] Olver P.J., Evolution equations possessing infinitely many symmetries, J. Math. Phys., 1977, 18(6), 1212–1215 http://dx.doi.org/10.1063/1.523393 Zbl0348.35024
- [37] Olver P.J., Applications of Lie Groups to Differential Equations, 2nd ed., Grad. Texts in Math., 107, Springer, New York, 1993 http://dx.doi.org/10.1007/978-1-4612-4350-2
- [38] Olver P.J., Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995 http://dx.doi.org/10.1017/CBO9780511609565
- [39] Papachristou C.J., Potential symmetries for self-dual gauge fields, Phys. Lett. A, 1990, 145(5), 250–254 http://dx.doi.org/10.1016/0375-9601(90)90359-V
- [40] Papachristou C.J., Harrison B.K., Bäcklund-transformation-related recursion operators: application to self-dual Yang-Mills equation, J. Nonlinear Math. Phys., 2010, 17(1), 35–49 http://dx.doi.org/10.1142/S1402925110000581 Zbl1190.35190
- [41] Pavlov M.V., Integrable hydrodynamic chains, J. Math. Phys., 2003, 44(9), 4134–4156 http://dx.doi.org/10.1063/1.1597946 Zbl1062.37078
- [42] Sanders J.A., Wang J.P., On recursion operators, Phys. D, 2001, 149(1–2), 1–10 http://dx.doi.org/10.1016/S0167-2789(00)00188-3 Zbl0972.35137
- [43] Santini P.M., Fokas A.S., Recursion operators and bi-Hamiltonian structures in multidimensions. I, Comm. Math. Phys., 1988, 115(3), 375–419 http://dx.doi.org/10.1007/BF01218017 Zbl0674.35074
- [44] Sergyeyev A., On recursion operators and nonlocal symmetries of evolution equations, In: Proceedings of the Seminar on Differential Geometry, Opava, 2000, Math. Publ., 2, Silesian University at Opava, Opava, 2000, 159–173 Zbl1096.37503
- [45] Stormark O., Lie’s Structural Approach to PDE Systems, Encyclopedia Math. Appl., 80, Cambridge University Press, Cambridge, 2000 http://dx.doi.org/10.1017/CBO9780511569456 Zbl0959.35004
- [46] Vasilieva M.V., Structure of Infinite Lie Groups of Transformations, Moskov. Gosudartv. Ped. Inst., Moscow, 1972 (in Russian)
- [47] Vinogradov A.M., Local symmetries and conservation laws, Acta Appl. Math., 1984, 2(1), 21–78 http://dx.doi.org/10.1007/BF01405491 Zbl0534.58005
- [48] Wahlquist H.D., Estabrook F.B., Prolongation structures of nonlinear evolution equations, J. Math. Phys., 1975, 16, 1–7 http://dx.doi.org/10.1063/1.522396 Zbl0298.35012
- [49] Wang J.P., A list of 1+1 dimensional integrable equations and their properties, J. Nonlinear Math. Phys., 2002, 9(Suppl. 1), 213–233 http://dx.doi.org/10.2991/jnmp.2002.9.s1.18
- [50] Zakharov V.E., Konopel’chenko B.G., On the theory of recursion operator, Commun. Math. Phys., 1984, 94(4), 483–509 http://dx.doi.org/10.1007/BF01403883
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.