A glimpse of deductive systems in algebra
Dumitru Buşneag; Sergiu Rudeanu
Open Mathematics (2010)
- Volume: 8, Issue: 4, page 688-705
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topDumitru Buşneag, and Sergiu Rudeanu. "A glimpse of deductive systems in algebra." Open Mathematics 8.4 (2010): 688-705. <http://eudml.org/doc/269026>.
@article{DumitruBuşneag2010,
abstract = {The concept of a deductive system has been intensively studied in algebraic logic, per se and in connection with various types of filters. In this paper we introduce an axiomatization which shows how several resembling theorems that had been separately proved for various algebras of logic can be given unique proofs within this axiomatic framework. We thus recapture theorems already known in the literature, as well as new ones. As a by-product we introduce the class of pre-BCK algebras.},
author = {Dumitru Buşneag, Sergiu Rudeanu},
journal = {Open Mathematics},
keywords = {Deductive system; Filter; ⊙-filter; Strong filter; Algebra of logic; Hilbert algebra; pre-BCK algebra; deductive system; filter; strong filter; algebra of logic},
language = {eng},
number = {4},
pages = {688-705},
title = {A glimpse of deductive systems in algebra},
url = {http://eudml.org/doc/269026},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Dumitru Buşneag
AU - Sergiu Rudeanu
TI - A glimpse of deductive systems in algebra
JO - Open Mathematics
PY - 2010
VL - 8
IS - 4
SP - 688
EP - 705
AB - The concept of a deductive system has been intensively studied in algebraic logic, per se and in connection with various types of filters. In this paper we introduce an axiomatization which shows how several resembling theorems that had been separately proved for various algebras of logic can be given unique proofs within this axiomatic framework. We thus recapture theorems already known in the literature, as well as new ones. As a by-product we introduce the class of pre-BCK algebras.
LA - eng
KW - Deductive system; Filter; ⊙-filter; Strong filter; Algebra of logic; Hilbert algebra; pre-BCK algebra; deductive system; filter; strong filter; algebra of logic
UR - http://eudml.org/doc/269026
ER -
References
top- [1] Abbott J.C., Implicational algebras, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 1967, 11(59), 3–23
- [2] Abbott J.C., Semi-boolean algebra, Mat. Vesnik., 1967, 4(19), 177–198 Zbl0153.02704
- [3] Birkhoff G., Lattice Theory, 3rd ed., American Mathematical Society, Providence, 1967
- [4] Boicescu V., Filipoiu A., Georgescu G., Rudeanu S., Łukasiewicz-Moisil Algebras, North-Holland, Amsterdam, 1991 Zbl0726.06007
- [5] Buşneag D., Contribuţi la studiul algebrelor Hilbert, Ph.D. thesis, Univ. Bucharest, 1985
- [6] Buşneag D., On the maximal deductive systems of a bounded Hilbert algebra, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 1987, 31(79)(1), 9–21
- [7] Buşneag D., Hertz algebras of fractions and maximal Hertz algebra of quotients, Math. Japon., 1994, 39(3), 461–469 Zbl0810.06011
- [8] Buşneag D., Categories of Algebraic Logic, Editura Academiei Române, Bucharest, 2006 Zbl05191994
- [9] Buşneag D., Piciu D., On the lattice of deductive systems of a BL-algebra, Cent. Eur. J. Math., 2003, 1(2), 221–237 http://dx.doi.org/10.2478/BF02476010[Crossref] Zbl1040.03047
- [10] Celani S.A., Cabrer L.M., Montangie D., Representation and duality for Hilbert algebras, Cent. Eur. J. Math., 2009, 7(3), 463–478 http://dx.doi.org/10.2478/s11533-009-0032-5[Crossref][WoS] Zbl1184.03064
- [11] Chajda I., The lattice of deductive systems on Hilbert algebras, Southeast Asian Bull. Math., 2002, 26(1), 21–26 http://dx.doi.org/10.1007/s100120200022[Crossref] Zbl1010.03054
- [12] Chajda I., Halaš R., Algebraic properties of pre-logics, Math. Slovaca, 2002, 52(2), 157–175 Zbl1007.08003
- [13] Chajda I., Halaš R., Abbott groupoids, J. Mult.-Valued Logic Soft Comput., 2004, 10(4), 385–394
- [14] Chajda I., Halaš R., Deductive systems and Galois connections, In: Galois Connections and Applications, Kluwer, Dordrecht, 2004, 399–411 Zbl1079.08001
- [15] Chajda I., Halaš R., Distributive implication groupoids, Cent. Eur. J. Math., 2007, 5(3), 484–492 http://dx.doi.org/10.2478/s11533-007-0021-5[Crossref][WoS] Zbl1134.03042
- [16] Chajda I., Halaš R., Kuhr J., Semilattice Structures, Heldermann, Lemgo, 2007
- [17] Cignoli R., Algebras de Moisil de order n, Ph.D. thesis, Universidad Nacional del Sur, Bahía Blanca, 1969
- [18] Diego A., Sobre álgebras de Hilbert, Notas de Lógica Matematica, 12, Instituto de Matemática, Univ. Nacional del Sur, Bahía Blanca, 1965
- [19] Diego A., Sur les algèbres de Hilbert, Collection de Logique Math., Sér. A, 21, Gauthier-Villars, Paris, 1966
- [20] Figallo A., Ziliani A., Remarks on Hertz algebras and implicative semilattices, Bull. Sect. Logic Univ. Łódź, 2005, 34(1), 37–42 Zbl1114.03312
- [21] Georgescu G., Algebra logicii - logica algebrică (I), Revista de Logică, 2009, 2, available at: http://egovbus.net/rdl/articole/No1Art34.pdf
- [22] Grätzer G., Universal Algebra, 2nd ed., Springer, New York-Heidelberg, 1979
- [23] Halaš R., Ideals and D-systems in orthoimplication algebras, J. Mult.-Valued Logic Soft Comput., 2005, 11(3–4), 309–316
- [24] Iorgulescu A., Algebras of Logic as BCK Algebras, Editura ASE, Bucharest, 2008 Zbl1172.03038
- [25] Iséki K., Tanaka S., Ideal theory of BCK-algebras, Math. Japon., 1976, 21(4), 351–366 Zbl0355.02041
- [26] Jun Y.B., Deductive systems of Hilbert algebras, Math. Japon., 1996, 43(1), 51–54 Zbl0844.03033
- [27] Katriňák T., Bemerkung über pseudokomplementaren halbgeordneten Mengen, Acta Fac. Rerum Natur. Univ. Comenian. Math., 1968, 19, 181–185
- [28] Liu L.Z., Li K.T., Boolean filters and positive implicative filters of residuated lattices, Inform. Sci., 2007, 177(24), 5725–5738 http://dx.doi.org/10.1016/j.ins.2007.07.014[WoS][Crossref] Zbl1127.06013
- [29] Monteiro A., L’arithmétique des filtres et les espaces topologiques, In: De Segundo Symposium de Matematicas-Villavicencio (Mendoza, Buenos Aires), 21–25 July 1954, Centro di Cooperacion UNESCO para America Latina, Montevideo, 129–172; Notas de Lógica Matemática, 1974, 30, 157
- [30] Monteiro A., Sur la définition des algebres de Łukasiewicz trivalentes, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine, 1963, 7(55), 3–12 Zbl0143.00605
- [31] Nemitz W.C., On the lattice of filters of an implicative semi-lattice, J. Math. Mech., 1968/69, 18, 683–688 Zbl0169.02101
- [32] Pałasiński M., On ideal and congruence lattices of BCK algebras, Math. Japon., 1981, 26(5), 543–544 Zbl0476.03064
- [33] Piciu D., Algebras of Fuzzy Logic, Ed. Universitaria Craiova, 2007
- [34] Rasiowa H., An Algebraic Approach to Non-Classical Logics, North-Holland, Amsterdam, 1974 Zbl0299.02069
- [35] Roman S., Lattices and Ordered Sets, Springer, New York, 2008 Zbl1154.06001
- [36] Rudeanu S., On relatively pseudocomplemented posets and Hilbert algebras, An. Śtiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat., 1985, 31(suppl.), 74–77
- [37] Rudeanu S., Localizations and fractions in algebra of logic, J. Mult.-Valued Logic Soft Comput., 2010, 16(3–5), 467–504
- [38] Turunen E., Mathematics Behind Fuzzy Logic, Physica-Verlag, Heidelberg, 1999 Zbl0940.03029
- [39] Turunen E., BL-algebras of basic fuzzy logic, Mathware Soft Comput., 1999, 6(1), 49–61 Zbl0962.03020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.