On the diffeomorphic type of the complement to a line arrangement in a projective plane
Fedor Bogomolov; Viktor Kulikov
Open Mathematics (2012)
- Volume: 10, Issue: 2, page 521-529
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Eliyahu M., Garber D., Teicher M., A conjugation-free geometric presentation of fundamental groups of arrangements, Manuscripta Math., 2010, 133(1–2), 247–271 http://dx.doi.org/10.1007/s00229-010-0380-2 Zbl1205.14034
- [2] Fan K.-M., Direct product of free groups as the fundamental group of the complement of a union of lines, Michigan Math. J., 1997, 44(2), 283–291 http://dx.doi.org/10.1307/mmj/1029005704 Zbl0911.14007
- [3] Hirzebruch F., Arrangements of lines and algebraic surfaces, In: Arithmetic and Geometry II, Progr. Math., 36, Birkhäuser, Boston, 1983, 113–140
- [4] Jiang T., Yau S.S.-T., Diffeomorphic types of the complements of arrangements of hyperplanes, Compositio Math., 1994, 92(2), 133–155 Zbl0828.57018
- [5] Rybnikov G., On the fundamental group of the complement of a complex hyperplane arrangement, Funct. Anal. Appl., 2011, 45(2), 137–148 http://dx.doi.org/10.1007/s10688-011-0015-8 Zbl1271.14085
- [6] Wang S., Yau S.S.-T., Rigidity of differentiable structure for new class of line arrangements, Comm. Anal. Geom., 2005, 13(5), 1057–1075 Zbl1115.52010