Diffeomorphic types of the complements of arrangements of hyperplanes

Tan Jiang; Stephen S.-T. Yau

Compositio Mathematica (1994)

  • Volume: 92, Issue: 2, page 133-155
  • ISSN: 0010-437X

How to cite

top

Jiang, Tan, and Yau, Stephen S.-T.. "Diffeomorphic types of the complements of arrangements of hyperplanes." Compositio Mathematica 92.2 (1994): 133-155. <http://eudml.org/doc/90302>.

@article{Jiang1994,
author = {Jiang, Tan, Yau, Stephen S.-T.},
journal = {Compositio Mathematica},
keywords = {homotopy type of the complement; lines in ; complex hyperplane arrangements; intersection lattice},
language = {eng},
number = {2},
pages = {133-155},
publisher = {Kluwer Academic Publishers},
title = {Diffeomorphic types of the complements of arrangements of hyperplanes},
url = {http://eudml.org/doc/90302},
volume = {92},
year = {1994},
}

TY - JOUR
AU - Jiang, Tan
AU - Yau, Stephen S.-T.
TI - Diffeomorphic types of the complements of arrangements of hyperplanes
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 92
IS - 2
SP - 133
EP - 155
LA - eng
KW - homotopy type of the complement; lines in ; complex hyperplane arrangements; intersection lattice
UR - http://eudml.org/doc/90302
ER -

References

top
  1. [Arn] V.I. Arnold: The cohomology ring of the colored braid group. Mat. Sametki5 (1969) 227-231; Math. Notes5 (1969) 138-140. Zbl0277.55002MR242196
  2. [Arv1] W. Arvola: The fundamental group of the complement of an arrangement of complex hyperplanes (preprint). Zbl0772.57001MR1191377
  3. [Arv2] W. Arvola: Complexified real arrangements of hyperplanes (preprint). Zbl0731.57011MR1103735
  4. [Bj-Zi] A. Björner and G. Ziegler: Combinatorial stratification of complex arrangements. J. Amer. Math. Soc., 1992. Zbl0754.52003MR1119198
  5. [Br] E. Brieskorn: Sur les groups de tresses, in " Séminaire Bourbaki1971/72", Lecture Notes in Math. 317. Springer-Verlag: Berlin, Heidelberg, New York (1973) 21-44. Zbl0277.55003MR422674
  6. [Ca] P. Cartier: Les arrangements d'hyperplans: un chapitre de géometrie combinatoire, in "Séminaire Bourbaki1980/81," Lecture Notes in Math. 901. Springer-Verlag, Berlin, Heidelberg, New York (1981) 1-22. Zbl0483.51011MR647485
  7. [Co] H.S.M. Coxeter: Discrete groups generated by reflections. Annals of Math.35 (1934) 588-621. Zbl0010.01101MR1503182JFM60.0898.02
  8. [De] P. Deligne: Les immeubles des groups de tresses génèralisés. Invent. Math.17 (1972) 273-302. Zbl0238.20034MR422673
  9. [De-Mo] P. Deligne and G.D. Mostow: Monodromy of hypergeometric functions and non-lattice integral monodromy. Publ. Math. IHES63 (1986) 5-89. Zbl0615.22008MR849651
  10. [Fa] M. Falk: On the algebra associated with a geometric lattice. Advances in Mathematics, vol. 80(2) ((1990) 152-163. Zbl0733.05026MR1046688
  11. [Ge] I.M. Gelfand: General theory of hypergeometric functions. Soviet Math. Doklady33 (1986) 573-577. Zbl0645.33010MR841131
  12. [Go-Mac] M. Goresky and R. MacPherson: Stratified Morse Theory, Ergebnisse der Mathematik und ihre Grenzgebiete, 3Folge, Band 14. Springer-Verlag, Berlin (1988). Zbl0639.14012MR932724
  13. [Hi] F. Hirzzebriech: Arrangements of lines and algebraic surfaces, in "Arithmetic and Geometry", vol. II. Progress in Math. 36. Birkhauser, Boston (1983) 113-140. Zbl0527.14033MR717609
  14. [Ji-Ya] T. Jiang and S.S.-T. Yau: Topological and differentiable structures of the complement of an arrangement of hyperplanes (preprint). MR1216551
  15. [Ma] J. Mather: Notes on topological stability. Harvard University, July 1970. 
  16. [Mo] B. Moishezon: Simply connected algebraic surfaces of general type. Invent. Math.89 (1987) 601-643. Zbl0627.14019MR903386
  17. [Or1] P. Orlik: Introduction to Arrangements, C.B.M.S. Regional Conference Series in Mathematics, No. 72, A.M.S. Zbl0722.51003
  18. [Or2] P. Orlik: Complements of subspace arrangements (preprint). Zbl0795.52003MR1129843
  19. [Or-So1] P. Orlik and L. Solomon: Combinations and topology of complements of hyperplanes. Invent. Math.56 (1980) 167-189. Zbl0432.14016MR558866
  20. [Or-So2] P. Orlik and L. Solomon: Unitary reflection groups and cohomology. Invent. Math.59 (1980) 77-94. Zbl0452.20050MR575083
  21. [Or-So3] P. Orlik and L. Solomon: Discriminants in the invariant theory of reflection groups. Bagoya Math. J..109 (1988) 23-45. Zbl0614.20032MR931949
  22. [Ra1] R. Randall: The fundamental group of the complement of a union of complex hyperplanes. Invent. Math.80 (1985) 467-468. A correction of this paper by the same author is in Invent. Math.80 (1985) 467-468. Zbl0596.14014MR791670
  23. [Ra2] R. Randall: Lattice-isotopic arrangements are topologically isomorphic. Zbl0681.57016
  24. [Sa1] M. Salvetti: Topology of the complement of real hyperplanes in CN. Invent. Math.88 (1987) 603-618. Zbl0594.57009MR884802
  25. [Sa2] M. Salvetti: Arrangements of lines and monodromy of plane curves. Compositio Math.68 (1988) 103-122. Zbl0661.14038MR962507
  26. [Sa3] M. Salvetti: On the homotopy theory of complexes associated to metrical-hemisphere complexes. Discrete Mathematics113 (1993) 155-177. Zbl0774.52007MR1212876
  27. [Sh-To] G.C. Shepherd and J.A. Todd: Finite unitary reflection groups. Canad. J. Math.6 (1954) 274-304. Zbl0055.14305MR59914
  28. [Te] B. Teissier: Cycles évanescents, sections planes et conditions de Whitney. Asterisque (Société Mathématique de France) No. 7-8, 1973. Zbl0295.14003MR374482

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.