The Mukai conjecture for log Fano manifolds

Kento Fujita

Open Mathematics (2014)

  • Volume: 12, Issue: 1, page 14-27
  • ISSN: 2391-5455

Abstract

top
For a log Fano manifold (X,D) with D ≠ 0 and of the log Fano pseudoindex ≥2, we prove that the restriction homomorphism Pic(X) → Pic(D 1) of Picard groups is injective for any irreducible component D 1 ⊂ D. The strategy of our proof is to run a certain minimal model program and is similar to Casagrande’s argument. As a corollary, we prove that the Mukai conjecture (resp. the generalized Mukai conjecture) implies the log Mukai conjecture (resp. the log generalized Mukai conjecture).

How to cite

top

Kento Fujita. "The Mukai conjecture for log Fano manifolds." Open Mathematics 12.1 (2014): 14-27. <http://eudml.org/doc/269118>.

@article{KentoFujita2014,
abstract = {For a log Fano manifold (X,D) with D ≠ 0 and of the log Fano pseudoindex ≥2, we prove that the restriction homomorphism Pic(X) → Pic(D 1) of Picard groups is injective for any irreducible component D 1 ⊂ D. The strategy of our proof is to run a certain minimal model program and is similar to Casagrande’s argument. As a corollary, we prove that the Mukai conjecture (resp. the generalized Mukai conjecture) implies the log Mukai conjecture (resp. the log generalized Mukai conjecture).},
author = {Kento Fujita},
journal = {Open Mathematics},
keywords = {Fano manifold; Mukai conjecture; Log Fano manifold; Mori dream space; Simple normal crossing Fano variety; log Fano manifold; mori dream space; simple normal crossing Fano variety},
language = {eng},
number = {1},
pages = {14-27},
title = {The Mukai conjecture for log Fano manifolds},
url = {http://eudml.org/doc/269118},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Kento Fujita
TI - The Mukai conjecture for log Fano manifolds
JO - Open Mathematics
PY - 2014
VL - 12
IS - 1
SP - 14
EP - 27
AB - For a log Fano manifold (X,D) with D ≠ 0 and of the log Fano pseudoindex ≥2, we prove that the restriction homomorphism Pic(X) → Pic(D 1) of Picard groups is injective for any irreducible component D 1 ⊂ D. The strategy of our proof is to run a certain minimal model program and is similar to Casagrande’s argument. As a corollary, we prove that the Mukai conjecture (resp. the generalized Mukai conjecture) implies the log Mukai conjecture (resp. the log generalized Mukai conjecture).
LA - eng
KW - Fano manifold; Mukai conjecture; Log Fano manifold; Mori dream space; Simple normal crossing Fano variety; log Fano manifold; mori dream space; simple normal crossing Fano variety
UR - http://eudml.org/doc/269118
ER -

References

top
  1. [1] Andreatta M., Chierici E., Occhetta G., Generalized Mukai conjecture for special Fano varieties, Cent. Eur. J. Math., 2004, 2(2), 272–293 http://dx.doi.org/10.2478/BF02476544 Zbl1068.14049
  2. [2] Birkar C., Cascini P., Hacon C.D., McKernan J., Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., 2010, 23(2), 405–468 http://dx.doi.org/10.1090/S0894-0347-09-00649-3 Zbl1210.14019
  3. [3] Bonavero L., Casagrande C., Debarre O., Druel S., Sur une conjecture de Mukai, Comment. Math. Helv., 2003, 78(3), 601–626 http://dx.doi.org/10.1007/s00014-003-0765-x 
  4. [4] Casagrande C., On Fano manifolds with a birational contraction sending a divisor to a curve, Michigan Math. J., 2009, 58(3), 783–805 http://dx.doi.org/10.1307/mmj/1260475701 Zbl1184.14072
  5. [5] Casagrande C., On the Picard number of divisors in Fano manifolds, Ann. Sci. Éc. Norm. Supér., 2012, 45(3), 363–403 Zbl1267.14050
  6. [6] Fujino O., Introduction to the log minimal model program for log canonical pairs, preprint available at http://arxiv.org/abs/0907.1506/ Zbl06543115
  7. [7] Fujita K., Simple normal crossing Fano varieties and log Fano manifolds, preprint available at http://arxiv.org/abs/1206.1994/ Zbl1297.14047
  8. [8] Fujita T., On polarized manifolds whose adjoint bundles are not semipositive, In: Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 167–178 
  9. [9] Hu Y., Keel S., Mori dream spaces and GIT, Michigan Math. J., 2000, 48, 331–348 http://dx.doi.org/10.1307/mmj/1030132722 
  10. [10] Ishii S., Quasi-Gorenstein Fano 3-folds with isolated nonrational loci, Compositio Math., 1981, 77(3), 335–341 Zbl0738.14025
  11. [11] Kollár J., Rational Curves on Algebraic Varieties, Ergeb. Math. Grenzgeb., 32, Springer, Berlin, 1996 http://dx.doi.org/10.1007/978-3-662-03276-3 
  12. [12] Kollár J., Miyaoka Y., Mori S., Rational connectedness and boundedness of Fano manifolds, J. Differential Geom., 1992, 36(3), 765–779 Zbl0759.14032
  13. [13] Kollár J., Mori S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math., 134, Cambridge University Press, Cambridge, 1998 http://dx.doi.org/10.1017/CBO9780511662560 Zbl0926.14003
  14. [14] Maeda H., Classification of logarithmic Fano threefolds, Compositio Math., 1986, 57(1), 81–125 Zbl0658.14019
  15. [15] Mori S., Mukai S., Classification of Fano 3-folds with B 2 ≥ 2, Manuscr. Math., 1981, 36(2), 147–162, Erratum: Manuscr. Math., 2003, 110(3), 407 http://dx.doi.org/10.1007/BF01170131 Zbl0478.14033
  16. [16] Mukai S., Problems on characterization of the complex projective space, In: Birational Geometry of Algebraic Varieties, Open Problems, Katata, August 22–27, 1988, 57–60 
  17. [17] Novelli C., Occhetta G., Rational curves and bounds on the Picard number of Fano manifolds, Geom. Dedicata, 2010, 147, 207–217 http://dx.doi.org/10.1007/s10711-009-9452-4 Zbl1208.14033
  18. [18] Wiśniewski J.A., On contractions of extremal rays of Fano manifolds, J. Reine Angew. Math., 1991, 417, 141–157 Zbl0721.14023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.