The Mukai conjecture for log Fano manifolds
Open Mathematics (2014)
- Volume: 12, Issue: 1, page 14-27
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topKento Fujita. "The Mukai conjecture for log Fano manifolds." Open Mathematics 12.1 (2014): 14-27. <http://eudml.org/doc/269118>.
@article{KentoFujita2014,
abstract = {For a log Fano manifold (X,D) with D ≠ 0 and of the log Fano pseudoindex ≥2, we prove that the restriction homomorphism Pic(X) → Pic(D 1) of Picard groups is injective for any irreducible component D 1 ⊂ D. The strategy of our proof is to run a certain minimal model program and is similar to Casagrande’s argument. As a corollary, we prove that the Mukai conjecture (resp. the generalized Mukai conjecture) implies the log Mukai conjecture (resp. the log generalized Mukai conjecture).},
author = {Kento Fujita},
journal = {Open Mathematics},
keywords = {Fano manifold; Mukai conjecture; Log Fano manifold; Mori dream space; Simple normal crossing Fano variety; log Fano manifold; mori dream space; simple normal crossing Fano variety},
language = {eng},
number = {1},
pages = {14-27},
title = {The Mukai conjecture for log Fano manifolds},
url = {http://eudml.org/doc/269118},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Kento Fujita
TI - The Mukai conjecture for log Fano manifolds
JO - Open Mathematics
PY - 2014
VL - 12
IS - 1
SP - 14
EP - 27
AB - For a log Fano manifold (X,D) with D ≠ 0 and of the log Fano pseudoindex ≥2, we prove that the restriction homomorphism Pic(X) → Pic(D 1) of Picard groups is injective for any irreducible component D 1 ⊂ D. The strategy of our proof is to run a certain minimal model program and is similar to Casagrande’s argument. As a corollary, we prove that the Mukai conjecture (resp. the generalized Mukai conjecture) implies the log Mukai conjecture (resp. the log generalized Mukai conjecture).
LA - eng
KW - Fano manifold; Mukai conjecture; Log Fano manifold; Mori dream space; Simple normal crossing Fano variety; log Fano manifold; mori dream space; simple normal crossing Fano variety
UR - http://eudml.org/doc/269118
ER -
References
top- [1] Andreatta M., Chierici E., Occhetta G., Generalized Mukai conjecture for special Fano varieties, Cent. Eur. J. Math., 2004, 2(2), 272–293 http://dx.doi.org/10.2478/BF02476544 Zbl1068.14049
- [2] Birkar C., Cascini P., Hacon C.D., McKernan J., Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., 2010, 23(2), 405–468 http://dx.doi.org/10.1090/S0894-0347-09-00649-3 Zbl1210.14019
- [3] Bonavero L., Casagrande C., Debarre O., Druel S., Sur une conjecture de Mukai, Comment. Math. Helv., 2003, 78(3), 601–626 http://dx.doi.org/10.1007/s00014-003-0765-x
- [4] Casagrande C., On Fano manifolds with a birational contraction sending a divisor to a curve, Michigan Math. J., 2009, 58(3), 783–805 http://dx.doi.org/10.1307/mmj/1260475701 Zbl1184.14072
- [5] Casagrande C., On the Picard number of divisors in Fano manifolds, Ann. Sci. Éc. Norm. Supér., 2012, 45(3), 363–403 Zbl1267.14050
- [6] Fujino O., Introduction to the log minimal model program for log canonical pairs, preprint available at http://arxiv.org/abs/0907.1506/ Zbl06543115
- [7] Fujita K., Simple normal crossing Fano varieties and log Fano manifolds, preprint available at http://arxiv.org/abs/1206.1994/ Zbl1297.14047
- [8] Fujita T., On polarized manifolds whose adjoint bundles are not semipositive, In: Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 167–178
- [9] Hu Y., Keel S., Mori dream spaces and GIT, Michigan Math. J., 2000, 48, 331–348 http://dx.doi.org/10.1307/mmj/1030132722
- [10] Ishii S., Quasi-Gorenstein Fano 3-folds with isolated nonrational loci, Compositio Math., 1981, 77(3), 335–341 Zbl0738.14025
- [11] Kollár J., Rational Curves on Algebraic Varieties, Ergeb. Math. Grenzgeb., 32, Springer, Berlin, 1996 http://dx.doi.org/10.1007/978-3-662-03276-3
- [12] Kollár J., Miyaoka Y., Mori S., Rational connectedness and boundedness of Fano manifolds, J. Differential Geom., 1992, 36(3), 765–779 Zbl0759.14032
- [13] Kollár J., Mori S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math., 134, Cambridge University Press, Cambridge, 1998 http://dx.doi.org/10.1017/CBO9780511662560 Zbl0926.14003
- [14] Maeda H., Classification of logarithmic Fano threefolds, Compositio Math., 1986, 57(1), 81–125 Zbl0658.14019
- [15] Mori S., Mukai S., Classification of Fano 3-folds with B 2 ≥ 2, Manuscr. Math., 1981, 36(2), 147–162, Erratum: Manuscr. Math., 2003, 110(3), 407 http://dx.doi.org/10.1007/BF01170131 Zbl0478.14033
- [16] Mukai S., Problems on characterization of the complex projective space, In: Birational Geometry of Algebraic Varieties, Open Problems, Katata, August 22–27, 1988, 57–60
- [17] Novelli C., Occhetta G., Rational curves and bounds on the Picard number of Fano manifolds, Geom. Dedicata, 2010, 147, 207–217 http://dx.doi.org/10.1007/s10711-009-9452-4 Zbl1208.14033
- [18] Wiśniewski J.A., On contractions of extremal rays of Fano manifolds, J. Reine Angew. Math., 1991, 417, 141–157 Zbl0721.14023
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.