On the Picard number of divisors in Fano manifolds
Annales scientifiques de l'École Normale Supérieure (2012)
- Volume: 45, Issue: 3, page 363-403
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topCasagrande, Cinzia. "On the Picard number of divisors in Fano manifolds." Annales scientifiques de l'École Normale Supérieure 45.3 (2012): 363-403. <http://eudml.org/doc/272206>.
@article{Casagrande2012,
abstract = {Let $X$ be a complex Fano manifold of arbitrary dimension, and $D$ a prime divisor in $X$. We consider the image $\mathcal \{N\}_1(D,X)$ of $\mathcal \{N\}_1(D)$ in $\mathcal \{N\}_1(X)$ under the natural push-forward of $1$-cycles. We show that $\rho _X-\rho _D\le \operatorname\{codim\}\mathcal \{N\}_1(D,X)\le 8$. Moreover if $\operatorname\{codim\}\mathcal \{N\}_1(D,X)\ge 3$, then either $X\cong S\times T$ where $S$ is a Del Pezzo surface, or $\operatorname\{codim\}\mathcal \{N\}_1(D,X)=3$ and $X$ has a fibration in Del Pezzo surfaces onto a Fano manifold $T$ such that $\rho _X-\rho _T=4$.},
author = {Casagrande, Cinzia},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Fano varieties; Mori theory; extremal rays},
language = {eng},
number = {3},
pages = {363-403},
publisher = {Société mathématique de France},
title = {On the Picard number of divisors in Fano manifolds},
url = {http://eudml.org/doc/272206},
volume = {45},
year = {2012},
}
TY - JOUR
AU - Casagrande, Cinzia
TI - On the Picard number of divisors in Fano manifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 3
SP - 363
EP - 403
AB - Let $X$ be a complex Fano manifold of arbitrary dimension, and $D$ a prime divisor in $X$. We consider the image $\mathcal {N}_1(D,X)$ of $\mathcal {N}_1(D)$ in $\mathcal {N}_1(X)$ under the natural push-forward of $1$-cycles. We show that $\rho _X-\rho _D\le \operatorname{codim}\mathcal {N}_1(D,X)\le 8$. Moreover if $\operatorname{codim}\mathcal {N}_1(D,X)\ge 3$, then either $X\cong S\times T$ where $S$ is a Del Pezzo surface, or $\operatorname{codim}\mathcal {N}_1(D,X)=3$ and $X$ has a fibration in Del Pezzo surfaces onto a Fano manifold $T$ such that $\rho _X-\rho _T=4$.
LA - eng
KW - Fano varieties; Mori theory; extremal rays
UR - http://eudml.org/doc/272206
ER -
References
top- [1] T. Ando, On extremal rays of the higher-dimensional varieties, Invent. Math.81 (1985), 347–357. Zbl0554.14001MR799271
- [2] M. Andreatta, E. Ballico & J. A. Wiśniewski, Vector bundles and adjunction, Internat. J. Math.3 (1992), 331–340. Zbl0770.14008MR1163727
- [3] M. Andreatta & J. A. Wiśniewski, A view on contractions of higher-dimensional varieties, in Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math. 62, Amer. Math. Soc., 1997, 153–183. Zbl0948.14014MR1492522
- [4] A. Beauville, Prym varieties and the Schottky problem, Invent. Math.41 (1977), 149–196. Zbl0333.14013MR572974
- [5] C. Birkar, P. Cascini, C. D. Hacon & J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc.23 (2010), 405–468. Zbl1210.14019MR2601039
- [6] L. Bonavero, F. Campana & J. A. Wiśniewski, Variétés complexes dont l’éclatée en un point est de Fano, C. R. Math. Acad. Sci. Paris334 (2002), 463–468. Zbl1036.14020MR1890634
- [7] L. Bonavero, C. Casagrande, O. Debarre & S. Druel, Sur une conjecture de Mukai, Comment. Math. Helv.78 (2003), 601–626. Zbl1044.14019MR1998396
- [8] L. Bonavero, C. Casagrande & S. Druel, On covering and quasi-unsplit families of curves, J. Eur. Math. Soc. (JEMS) 9 (2007), 45–57. Zbl1107.14015MR2283102
- [9] C. Casagrande, Toric Fano varieties and birational morphisms, Int. Math. Res. Not.27 (2003), 1473–1505. Zbl1083.14516MR1976232
- [10] C. Casagrande, Quasi-elementary contractions of Fano manifolds, Compos. Math.144 (2008), 1429–1460. Zbl1158.14037MR2474316
- [11] C. Casagrande, On Fano manifolds with a birational contraction sending a divisor to a curve, Michigan Math. J.58 (2009), 783–805. Zbl1184.14072MR2595565
- [12] O. Debarre, Higher-dimensional algebraic geometry, Universitext, Springer, 2001. Zbl0978.14001MR1841091
- [13] Y. Hu & S. Keel, Mori dream spaces and GIT, Michigan Math. J.48 (2000), 331–348. Zbl1077.14554MR1786494
- [14] S. Ishii, Quasi-Gorenstein Fano -folds with isolated nonrational loci, Compositio Math.77 (1991), 335–341. Zbl0738.14025MR1092773
- [15] J. Kollár, Rational curves on algebraic varieties, Ergebn. Math. Grenzg. 32, Springer, 1996. Zbl0877.14012
- [16] J. Kollár & S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics 134, Cambridge Univ. Press, 1998. Zbl0926.14003
- [17] R. Lazarsfeld, Positivity in algebraic geometry. I, Ergebn. Math. Grenzg. 48, Springer, 2004. Zbl1093.14500MR2095471
- [18] G. Occhetta, A characterization of products of projective spaces, Canad. Math. Bull.49 (2006), 270–280. Zbl1115.14034
- [19] V. G. Sarkisov, On conic bundle structures, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 371–408; English translation: Math. USSR Izvestia 20 (1982), 355–390. Zbl0593.14034
- [20] T. Tsukioka, Classification of Fano manifolds containing a negative divisor isomorphic to projective space, Geom. Dedicata123 (2006), 179–186. Zbl1121.14036
- [21] J. A. Wiśniewski, On contractions of extremal rays of Fano manifolds, J. reine angew. Math. 417 (1991), 141–157. Zbl0721.14023
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.