Discrete Laplace cycles of period four
Open Mathematics (2012)
- Volume: 10, Issue: 2, page 426-439
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topHans-Peter Schröcker. "Discrete Laplace cycles of period four." Open Mathematics 10.2 (2012): 426-439. <http://eudml.org/doc/269134>.
@article{Hans2012,
abstract = {We study discrete conjugate nets whose Laplace sequence is of period four. Corresponding points of opposite nets in this cyclic sequence have equal osculating planes in different net directions, that is, they correspond in an asymptotic transformation. We show that this implies that the connecting lines of corresponding points form a discrete W-congruence. We derive some properties of discrete Laplace cycles of period four and describe two explicit methods for their construction.},
author = {Hans-Peter Schröcker},
journal = {Open Mathematics},
keywords = {Discrete conjugate net; Laplace transform; Asymptotic transform; Discrete W-congruence; Discrete projective differential geometry; discrete conjugate net; asymptotic transform; discrete -congruence; discrete projective differential geometry},
language = {eng},
number = {2},
pages = {426-439},
title = {Discrete Laplace cycles of period four},
url = {http://eudml.org/doc/269134},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Hans-Peter Schröcker
TI - Discrete Laplace cycles of period four
JO - Open Mathematics
PY - 2012
VL - 10
IS - 2
SP - 426
EP - 439
AB - We study discrete conjugate nets whose Laplace sequence is of period four. Corresponding points of opposite nets in this cyclic sequence have equal osculating planes in different net directions, that is, they correspond in an asymptotic transformation. We show that this implies that the connecting lines of corresponding points form a discrete W-congruence. We derive some properties of discrete Laplace cycles of period four and describe two explicit methods for their construction.
LA - eng
KW - Discrete conjugate net; Laplace transform; Asymptotic transform; Discrete W-congruence; Discrete projective differential geometry; discrete conjugate net; asymptotic transform; discrete -congruence; discrete projective differential geometry
UR - http://eudml.org/doc/269134
ER -
References
top- [1] Barner M., Über geschlossene Laplace-Ketten, Arch. Math. (Basel), 1958, 9(5), 366–377
- [2] Bobenko A.I., Suris Y.B., Discrete Differential Geometry, Grad. Stud. Math., 98, American Mathematical Society, Providence, 2008 http://dx.doi.org/10.1007/978-3-7643-8621-4
- [3] Degen W., Über geschlossene Laplace-Ketten ungerader Periodenzahl, Math. Z., 1960, 73(2), 95–120 http://dx.doi.org/10.1007/BF01162471 Zbl0101.39504
- [4] Doliwa A., Geometric discretisation of the Toda system, Phys. Lett. A, 1997, 234(3), 187–192 http://dx.doi.org/10.1016/S0375-9601(97)00477-5 Zbl1044.37527
- [5] Doliwa A., Asymptotic lattices and W-congruences in integrable discrete geometry, J. Nonlinear Math. Phys., 2001, 8(suppl.), 88–92 http://dx.doi.org/10.2991/jnmp.2001.8.s.16 Zbl0990.37055
- [6] Doliwa A., Discrete asymptotic nets and W-congruences in Plücker line geometry, J. Geom. Phys., 2001, 39(1), 9–29 http://dx.doi.org/10.1016/S0393-0440(00)00070-X Zbl0990.37056
- [7] Doliwa A., Santini P.M., Mañas M., Transformations of quadrilateral lattices, J. Math. Phys., 2000, 41(2), 944–990 http://dx.doi.org/10.1063/1.533175 Zbl0987.37070
- [8] Edge W.L., The net of quadric surfaces associated with a pair of Möbius tetrads, Proc. Lond. Math. Soc., 1936, 41(1), 337–360 http://dx.doi.org/10.1112/plms/s2-41.5.337 Zbl62.0744.02
- [9] Hammond E.S., Periodic conjugate nets, Ann. of Math, 1921, 22(4), 238–261 http://dx.doi.org/10.2307/1967906 Zbl48.0844.03
- [10] Hu H.S., Laplace sequences of surfaces in projective space and two-dimensional Toda equations, Lett. Math. Phys., 2001, 57(1), 19–32 http://dx.doi.org/10.1023/A:1017923708829
- [11] Jonas H., Allgemeine Transformationstheorie der konjugierten Systeme mit viergliedrigen Laplaceschen Zyklen, Math. Ann., 1937, 114(1), 749–780 http://dx.doi.org/10.1007/BF01594207 Zbl63.0665.01
- [12] Jonas H., Ein allgemeiner Satz über W-Kongruenzen mit Anwendungen auf Laplacesche Zyklen, Biegungsflächen des einschaligen Hyperboloids und schiefe Weingarten Systeme, Math. Ann., 1937, 114(1), 237–274 http://dx.doi.org/10.1007/BF01594175 Zbl63.0664.05
- [13] Möbius A.F., Kann von zwei dreiseitigen Pyramiden eine jede in Bezug auf die andere um- und eingeschrieben zugleich heißen?, J. Reine Angew. Math., 1828, 3, 273–278 http://dx.doi.org/10.1515/crll.1828.3.273
- [14] Nieszporski M., On a discretization of asymptotic nets, J. Geom. Phys., 2002, 40(3–4), 259–276 http://dx.doi.org/10.1016/S0393-0440(01)00038-9
- [15] Pottmann H., Wallner J., Computational Line Geometry, Math. Vis., Springer, Berlin, 2010 http://dx.doi.org/10.1007/978-3-642-04018-4 Zbl1175.51014
- [16] Sasaki T., Line congruence and transformation of projective surfaces, Kyushu J. Math., 2006, 60(1), 101–243 http://dx.doi.org/10.2206/kyushujm.60.101 Zbl1104.53008
- [17] Sauer R., Projektive Liniengeometrie, Göschens Lehrbücherei I: Reine und Angewandte Mathematik, 23, de Gruyter, Berlin, 1937
- [18] Veblen O., Young J.W., Projective Geometry. I, Ginn and Company, Boston-London, 1910
- [19] Wilczynski E.J., The general theory of congruences, Trans. Amer. Math. Soc., 1915, 16(3), 311–327 http://dx.doi.org/10.1090/S0002-9947-1915-1501014-2 Zbl45.0927.01
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.