A new line Involution and the Classification Process
We study discrete conjugate nets whose Laplace sequence is of period four. Corresponding points of opposite nets in this cyclic sequence have equal osculating planes in different net directions, that is, they correspond in an asymptotic transformation. We show that this implies that the connecting lines of corresponding points form a discrete W-congruence. We derive some properties of discrete Laplace cycles of period four and describe two explicit methods for their construction.
The polynomial functions on a projective space over a field = ℝ, ℂ or ℍ come from the corresponding sphere via the Hopf fibration. The main theorem states that every polynomial function ϕ(x) of degree d is a linear combination of “elementary” functions .