The degenerate C. Neumann system I: symmetry reduction and convexity
Open Mathematics (2012)
- Volume: 10, Issue: 5, page 1627-1654
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topHolger Dullin, and Heinz Hanßmann. "The degenerate C. Neumann system I: symmetry reduction and convexity." Open Mathematics 10.5 (2012): 1627-1654. <http://eudml.org/doc/269160>.
@article{HolgerDullin2012,
abstract = {The C. Neumann system describes a particle on the sphere S n under the influence of a potential that is a quadratic form. We study the case that the quadratic form has ℓ +1 distinct eigenvalues with multiplicity. Each group of m σ equal eigenvalues gives rise to an O(m σ)-symmetry in configuration space. The combined symmetry group G is a direct product of ℓ + 1 such factors, and its cotangent lift has an Ad*-equivariant momentum mapping. Regular reduction leads to the Rosochatius system on S ℓ, which has the same form as the Neumann system albeit for an additional effective potential. To understand how the reduced systems fit together we use singular reduction to construct an embedding of the reduced Poisson space T*S n/G into ℝ3ℓ+3. The global geometry is described, in particular the bundle structure that appears as a result of the superintegrability of the system. We show how the reduced Neumann system separates in elliptical-spherical co-ordinates. We derive the action variables and frequencies as complete hyperelliptic integrals of genus ℓ. Finally we prove a convexity result for the image of the Casimir mapping restricted to the energy surface.},
author = {Holger Dullin, Heinz Hanßmann},
journal = {Open Mathematics},
keywords = {Superintegrable system; Symmetry reduction; Global action; Separating co-ordinates; Discriminant locus; superintegrable system; symmetry reduction; global action; separating co-ordinates; discriminant locus},
language = {eng},
number = {5},
pages = {1627-1654},
title = {The degenerate C. Neumann system I: symmetry reduction and convexity},
url = {http://eudml.org/doc/269160},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Holger Dullin
AU - Heinz Hanßmann
TI - The degenerate C. Neumann system I: symmetry reduction and convexity
JO - Open Mathematics
PY - 2012
VL - 10
IS - 5
SP - 1627
EP - 1654
AB - The C. Neumann system describes a particle on the sphere S n under the influence of a potential that is a quadratic form. We study the case that the quadratic form has ℓ +1 distinct eigenvalues with multiplicity. Each group of m σ equal eigenvalues gives rise to an O(m σ)-symmetry in configuration space. The combined symmetry group G is a direct product of ℓ + 1 such factors, and its cotangent lift has an Ad*-equivariant momentum mapping. Regular reduction leads to the Rosochatius system on S ℓ, which has the same form as the Neumann system albeit for an additional effective potential. To understand how the reduced systems fit together we use singular reduction to construct an embedding of the reduced Poisson space T*S n/G into ℝ3ℓ+3. The global geometry is described, in particular the bundle structure that appears as a result of the superintegrability of the system. We show how the reduced Neumann system separates in elliptical-spherical co-ordinates. We derive the action variables and frequencies as complete hyperelliptic integrals of genus ℓ. Finally we prove a convexity result for the image of the Casimir mapping restricted to the energy surface.
LA - eng
KW - Superintegrable system; Symmetry reduction; Global action; Separating co-ordinates; Discriminant locus; superintegrable system; symmetry reduction; global action; separating co-ordinates; discriminant locus
UR - http://eudml.org/doc/269160
ER -
References
top- [1] Bates L., Zou M., Degeneration of Hamiltonian monodromy cycles, Nonlinearity, 1993, 6(2), 313–335 http://dx.doi.org/10.1088/0951-7715/6/2/009 Zbl0784.58026
- [2] Cushman R.H., Bates L.M., Global Aspects of Classical Integrable Systems, Birkhäuser, Basel, 1997 http://dx.doi.org/10.1007/978-3-0348-8891-2 Zbl0882.58023
- [3] Davison C.M., Dullin H.R., Geodesic flow on three dimensional ellipsoids with equal semi-axes, Regul. Chaotic Dyn., 2007, 12(2), 172–197 http://dx.doi.org/10.1134/S1560354707020050 Zbl1229.37050
- [4] Davison C.M., Dullin H.R., Bolsinov A.V., Geodesics on the ellipsoid and monodromy, J. Geom. Phys., 2007, 57(12), 2437–2454 http://dx.doi.org/10.1016/j.geomphys.2007.07.006 Zbl1148.53026
- [5] Devaney R.L., Transversal homoclinic orbits in an integrable system, Amer. J. Math., 1978, 100(3), 631–642 http://dx.doi.org/10.2307/2373844 Zbl0406.58019
- [6] Dullin H.R., Richter P.H., Veselov A.P., Waalkens H., Actions of the Neumann systems via Picard-Fuchs equations, Phys. D, 2001, 155(3–4), 159–183 http://dx.doi.org/10.1016/S0167-2789(01)00257-3 Zbl1001.70013
- [7] Efstathiou K., Metamorphoses of Hamiltonian Systems with Symmetries, Lecture Notes in Math., 1864, Springer, Berlin, 2005
- [8] Evans N.W., Superintegrability in classical mechanics, Phys. Rev. A, 1990, 41(10), 5666–5676 http://dx.doi.org/10.1103/PhysRevA.41.5666
- [9] Fassò F., The Euler-Poinsot top: a non-commutatively integrable system without global action-angle coordinates, Z. Angew. Math. Phys., 1996, 47(6), 953–976 http://dx.doi.org/10.1007/BF00920045 Zbl0895.70005
- [10] Fassò F., Superintegrable Hamiltonian systems: geometry and perturbations, In: Symmetry and Perturbation Theory, Cala Gonone, June, 2004, Acta Appl. Math., 2005, 87(1–3), 93–121
- [11] Kibler M., Winternitz P., Periodicity and quasi-periodicity for super-integrable Hamiltonian systems, Phys. Lett. A, 1990, 147(7), 338–342 http://dx.doi.org/10.1016/0375-9601(90)90549-4
- [12] Klein F., Sommerfeld A., Über die Theorie des Kreisels I-IV, Teubner, Leipzig, 1897, 1898, 1903, 1910 Zbl28.0658.04
- [13] Knörrer H., Geodesics on quadrics and a mechanical problem of C. Neumann, J. Reine Angew. Math., 1982, 334, 69–78
- [14] Knörrer H., Singular fibres of the momentum mapping for integrable Hamiltonian systems, J. Reine Angew. Math., 1985, 355, 67–107 Zbl0542.58005
- [15] Liu Z., A note on the C. Neumann problem, Acta Math. Appl. Sinica (English Ser.), 1992, 8(1), 1–5 http://dx.doi.org/10.1007/BF02006067 Zbl0766.58029
- [16] Macfarlane A.J., The quantum Neumann model with the potential of Rosochatius, Nuclear Phys. B, 1992, 386(2), 453–467 http://dx.doi.org/10.1016/0550-3213(92)90573-T
- [17] Marsden J.E., Ratiu T.S., Introduction to Mechanics and Symmetry, Texts Appl. Math., 17, Springer, New York, 1994 Zbl0811.70002
- [18] Marsden J., Weinstein A., Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys., 1974, 5(1), 121–130 http://dx.doi.org/10.1016/0034-4877(74)90021-4
- [19] Miščenko A.S., Fomenko A.T., A generalized Liouville method for the integration of Hamiltonian systems, Funct. Anal. Appl., 1978, 12(2), 113–121 http://dx.doi.org/10.1007/BF01076254
- [20] Moser J., Various aspects of integrable Hamiltonian systems, In: Dynamical Systems, Bressanone, June 19–27, 1978, Progr. Math., 8, 1980, Birkhäuser, Boston, 233–289
- [21] Moser J., Geometry of quadrics and spectral theory, In: The Chern Symposium 1979, Berkeley, June, 1979, Springer, New York-Berlin, 1980, 147–188 http://dx.doi.org/10.1007/978-1-4613-8109-9_7
- [22] Moser J., Integrable Hamiltonian Systems and Spectral Theory, Lezioni Fermiane, Scuola Normale Superiore, Pisa, 1983
- [23] Nekhoroshev N.N., Action-angle variables and their generalizations, Trans. Moscow Math. Soc., 1974, 26, 180–198 Zbl0284.58009
- [24] Neumann C., De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur, J. Reine Angew. Math., 1859, 56, 46–63 http://dx.doi.org/10.1515/crll.1859.56.46
- [25] Raţiu T., The C. Neumann problem as a completely integrable system on an adjoint orbit, Trans. Amer. Math. Soc., 1981, 264(2), 321–329 Zbl0475.58006
- [26] Rosochatius E., Über Bewegungen eines Punktes, Inaugural Dissertation, Unger, Göttingen, 1877 Zbl09.0651.02
- [27] Sjamaar R., Convexity properties of the moment mapping re-examined, Adv. Math., 1998, 138(1), 46–91 http://dx.doi.org/10.1006/aima.1998.1739 Zbl0915.58036
- [28] Veselov A.P., Two remarks about the connection of Jacobi and Neumann integrable systems, Math. Z., 1994, 216(3), 337–345 http://dx.doi.org/10.1007/BF02572325 Zbl0815.58011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.