The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Subnormal, permutable, and embedded subgroups in finite groups”

Erratum to: “Subnormal, permutable, and embedded subgroups in finite groups”

James Beidleman, Mathew Ragland (2012)

Open Mathematics

Similarity:

The original version of the article was published in Central European Journal of Mathematics, 2011, 9(4), 915–921, DOI: 10.2478/s11533-011-0029-8. Unfortunately, the original version of this article contains a mistake: Lemma 2.1 (2) is not true. We correct Lemma 2.2 (2) and Theorem 1.1 in our paper where this lemma was used.

OnCSQ-normal subgroups of finite groups

Yong Xu, Xianhua Li (2016)

Open Mathematics

Similarity:

We introduce a new subgroup embedding property of finite groups called CSQ-normality of subgroups. Using this subgroup property, we determine the structure of finite groups with some CSQ-normal subgroups of Sylow subgroups. As an application of our results, some recent results are generalized.

On some soluble groups in which U -subgroups form a lattice

Leonid A. Kurdachenko, Igor Ya. Subbotin (2007)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The article is dedicated to groups in which the set of abnormal and normal subgroups ( U -subgroups) forms a lattice. A complete description of these groups under the additional restriction that every counternormal subgroup is abnormal is obtained.

On subgroups of ZJ type of an F-injector for Fitting classes F between E and ES.

Ana Martínez Pastor (1994)

Publicacions Matemàtiques

Similarity:

Let G be a finite group and p a prime. We consider an F-injector K of G, being F a Fitting class between E y ES, and we study the structure and normality in G of the subgroups ZJ(K) and ZJ*(K), provided that G verifies certain conditions, extending some results of G. Glauberman (A characteristic subgroup of a p-stable group, (1968), 555-564).