Abelian varieties over fields of finite characteristic

Yuri Zarhin

Open Mathematics (2014)

  • Volume: 12, Issue: 5, page 659-674
  • ISSN: 2391-5455

Abstract

top
The aim of this paper is to extend our previous results about Galois action on the torsion points of abelian varieties to the case of (finitely generated) fields of characteristic 2.

How to cite

top

Yuri Zarhin. "Abelian varieties over fields of finite characteristic." Open Mathematics 12.5 (2014): 659-674. <http://eudml.org/doc/269226>.

@article{YuriZarhin2014,
abstract = {The aim of this paper is to extend our previous results about Galois action on the torsion points of abelian varieties to the case of (finitely generated) fields of characteristic 2.},
author = {Yuri Zarhin},
journal = {Open Mathematics},
keywords = {Abelian varieties; Isogenies; Points of finite order; Tate modules; isogenies; points of finite order; complex multiplication},
language = {eng},
number = {5},
pages = {659-674},
title = {Abelian varieties over fields of finite characteristic},
url = {http://eudml.org/doc/269226},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Yuri Zarhin
TI - Abelian varieties over fields of finite characteristic
JO - Open Mathematics
PY - 2014
VL - 12
IS - 5
SP - 659
EP - 674
AB - The aim of this paper is to extend our previous results about Galois action on the torsion points of abelian varieties to the case of (finitely generated) fields of characteristic 2.
LA - eng
KW - Abelian varieties; Isogenies; Points of finite order; Tate modules; isogenies; points of finite order; complex multiplication
UR - http://eudml.org/doc/269226
ER -

References

top
  1. [1] Bosch S., Lütkebohmert W., Raynaud M., Néron Models, Ergeb. Math. Grenzgeb., 21, Springer, Berlin, 1990 
  2. [2] Curtis Ch.W., Reiner I., Representation Theory of Finite Groups and Associative Algebras, Wiley Classics Library, John Wiley & Sons, New York, 1962 Zbl0131.25601
  3. [3] Faltings G., Complements to Mordell, In: Rational Points, Bonn, 1983/84, Aspects Math., E6, Vieweg, Braunschweig, 1984, 203–227 
  4. [4] Grothendieck A. (Ed.), Revêtements Étales et Groupe Fondamental (SGA 1), Lecture Notes in Math., 224, Springer, Berlin, 1971 
  5. [5] Grothendieck A., Modèles de Néron et monodromie, Éxpose IX dans SGA7, I, Lecture Notes in Math., 288, Springer, Berlin, 1972, 313–523 
  6. [6] Lang S., Algebra, Addison-Wesley, Reading, 1965 
  7. [7] Lenstra H.W. Jr., Oort F., Zarhin Yu.G., Abelian subvarieties, J. Algebra, 1996, 180(2), 513–516 http://dx.doi.org/10.1006/jabr.1996.0079 
  8. [8] Moret-Bailly L., Pinceaux de Variétés Abéliennes, Astérisque, 129, Paris, 1985 Zbl0595.14032
  9. [9] Mumford D., Abelian Varieties, 2nd ed., Oxford University Press, London, 1974 
  10. [10] Oort F., The isogeny class of a CM-type abelian variety is defined over a finite extension of the prime field, J. Pure Appl. Algebra, 1973, 3, 399–408 http://dx.doi.org/10.1016/0022-4049(73)90040-6 Zbl0272.14009
  11. [11] Serre J.-P., Sur les groupes des congruence des variétés abéliennes, Izv. Akad. Nauk SSSR Ser. Mat., 1964, 28, 3–20 Zbl0128.15601
  12. [12] Serre J.-P., Corps Locaux, 2nd ed., Publications de l’Université de Nancago, VIII, Hermann, Paris, 1968 
  13. [13] Serre J.-P., Représentations Linéares des Groupes Finis, 3rd ed., Hermann, Paris, 1978 
  14. [14] Serre J.-P., Abelian ℓ-Adic Representations and Elliptic Curves, 2nd ed., Advanced Book Classics, Addison-Wesley, Redwood City, 1989 
  15. [15] Skorobogatov A.N., Zarhin Yu.G., A finiteness theorem for the Brauer group of abelian varieties and K3 surfaces, J. Algebraic Geometry, 2008, 17(3), 481–502 http://dx.doi.org/10.1090/S1056-3911-07-00471-7 Zbl1157.14008
  16. [16] Tate J., Endomorphisms of abelian varieties over finite fields, Invent. Math., 1966, 2, 134–144 http://dx.doi.org/10.1007/BF01404549 Zbl0147.20303
  17. [17] Zarhin Ju.G., Endomorphisms of Abelian varieties over fields of finite characteristic, Math. USSR-Izv., 1975, 9, 255–260 http://dx.doi.org/10.1070/IM1975v009n02ABEH001476 Zbl0345.14014
  18. [18] Zarkhin Yu.G., Abelian varieties in characteristic p, Math. Notes, 1976, 19(3), 240–244 http://dx.doi.org/10.1007/BF01437858 Zbl0342.14011
  19. [19] Zarkhin Yu.G., Endomorphisms of Abelian varieties and points of finite order in characteristic p, Math. Notes, 1977, 21(6), 415–419 http://dx.doi.org/10.1007/BF01410167 Zbl0399.14027
  20. [20] Zarkhin Yu.G., Torsion of Abelian varieties in fininite characteristic, Math. Notes, 1977, 22(1), 493–498 http://dx.doi.org/10.1007/BF01147687 
  21. [21] Zarkhin Yu.G., Homomorphisms of Abelian varieties and points of finite order over fields of finite characteristic, In: Problems in Group Theory and Homological Algebra, Yaroslav. Gos. Univ., Yaroslavl, 1981, 146–147 (in Russian) 
  22. [22] Zarhin Yu.G., A finiteness theorem for unpolarized Abelian varieties over number fields with prescribed places of bad reduction, Invent. Math., 1985, 79(2), 309–321 http://dx.doi.org/10.1007/BF01388976 Zbl0557.14024
  23. [23] Zarhin Yu.G., Endomorphisms and torsion of abelian varieties, Duke Math. J., 1987, 54(1), 131–145 http://dx.doi.org/10.1215/S0012-7094-87-05410-X 
  24. [24] Zarhin Yu.G., Hyperelliptic Jacobians without complex multiplication in positive characteristic, Math. Res. Lett., 2001, 8(4), 429–435 http://dx.doi.org/10.4310/MRL.2001.v8.n4.a3 Zbl1079.14512
  25. [25] Zarkhin Yu.G., Endomorphism rings of certain Jacobians in finite characteristic, Sb. Math., 2002, 193(8), 1139–1149 http://dx.doi.org/10.1070/SM2002v193n08ABEH000673 Zbl1044.11051
  26. [26] Zarhin Yu.G., Non-supersingular hyperelliptic Jacobians, Bull. Soc. Math. France, 2004, 132(4), 617–634 Zbl1079.14038
  27. [27] Zarhin Yu.G., Homomorphisms of abelian varieties over finite fields, In: Higher-Dimensional Geometry over Finite Fields, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 16, IOS Press, Amsterdam, 2008, 315–343 
  28. [28] Zarhin Yu.G., Homomorphisms of abelian varieties over geometric fields of finite characteristic, J. Inst. Math. Jussieu, 2013, 12(2), 225–236 http://dx.doi.org/10.1017/S1474748012000655 Zbl1298.11055
  29. [29] Zarkhin Yu.G., Parshin A.N., Finiteness problems in Diophantine geometry, Amer. Math. Soc. Transl., 1989, 143, 35–102 
  30. [30] Zariski O., Samuel P., Commutative Algebra, I, Van Nostrand, Princeton, 1958 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.