Non-supersingular hyperelliptic jacobians
Bulletin de la Société Mathématique de France (2004)
- Volume: 132, Issue: 4, page 617-634
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topZarhin, Yuri G.. "Non-supersingular hyperelliptic jacobians." Bulletin de la Société Mathématique de France 132.4 (2004): 617-634. <http://eudml.org/doc/272307>.
@article{Zarhin2004,
abstract = {Let $K$ be a field of odd characteristic $p$, let $f(x)$ be an irreducible separable polynomial of degree $n \ge 5$ with big Galois group (the symmetric group or the alternating group). Let $C$ be the hyperelliptic curve $y^2=f(x)$ and $J(C)$ its jacobian. We prove that $J(C)$ does not have nontrivial endomorphisms over an algebraic closure of $K$ if either $n \ge 7$ or $p \ne 3$.},
author = {Zarhin, Yuri G.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {hyperelliptic jacobians; endomorphisms of abelian varieties; supersingular abelian varieties},
language = {eng},
number = {4},
pages = {617-634},
publisher = {Société mathématique de France},
title = {Non-supersingular hyperelliptic jacobians},
url = {http://eudml.org/doc/272307},
volume = {132},
year = {2004},
}
TY - JOUR
AU - Zarhin, Yuri G.
TI - Non-supersingular hyperelliptic jacobians
JO - Bulletin de la Société Mathématique de France
PY - 2004
PB - Société mathématique de France
VL - 132
IS - 4
SP - 617
EP - 634
AB - Let $K$ be a field of odd characteristic $p$, let $f(x)$ be an irreducible separable polynomial of degree $n \ge 5$ with big Galois group (the symmetric group or the alternating group). Let $C$ be the hyperelliptic curve $y^2=f(x)$ and $J(C)$ its jacobian. We prove that $J(C)$ does not have nontrivial endomorphisms over an algebraic closure of $K$ if either $n \ge 7$ or $p \ne 3$.
LA - eng
KW - hyperelliptic jacobians; endomorphisms of abelian varieties; supersingular abelian varieties
UR - http://eudml.org/doc/272307
ER -
References
top- [1] S. Abhyankar – « Galois theory on the line in nonzero characteristic », Bull. Amer. Math. Soc.27 (1992), p. 68–133. Zbl0760.12002MR1118002
- [2] L. Dornhoff – Group Representation Theory, Part A, Marcel Dekker, Inc., New York, 1972. Zbl0236.20004MR347960
- [3] W. Feit – « The computations of some Schur indices », Israel J. Math.46 (1983), p. 274–300. Zbl0528.20009MR730344
- [4] D. Gorenstein – Finite Simple Groups, An Introduction to their Classification, Plenum Press, New York and London, 1982. Zbl0483.20008MR698782
- [5] T. Ibukiyama, T. Katsura & F. Oort – « Supersingular curves of genus two and class numbers », Compositio Math.57 (1986), p. 127–152. Zbl0589.14028MR827350
- [6] I. Isaacs – Character theory of finite groups, Pure and Applied Mathematics, vol. 69, Academic Press, New York-San Francisco-London, 1976. Zbl0337.20005MR460423
- [7] A. Ivanov & C. Praeger – « On finite affine 2-arc transitive graphs », Europ. J. Combinatorics14 (1993), p. 421–444. Zbl0794.05045MR1241910
- [8] G. Janusz – « Simple components of », Commun. Algebra1 (1974), p. 1–22. Zbl0281.20003MR344323
- [9] N. Katz – « Monodromy of families of curves: applications of some results of Davenport-Lewis », Séminaire de Théorie des Nombres (Paris 1979–1980) (M.-J. Bertin, éd.), Progress in Math., vol. 12, Birkhäuser, Boston-Basel-Stuttgart, 1981, p. 171–195. Zbl0475.14025MR633896
- [10] —, « Affine cohomological transforms, perversity, and monodromy », J. Amer. Math. Soc.6 (1993), p. 149–222. Zbl0815.14011MR1161307
- [11] N. Katz & P. Sarnak – Random matrices, Frobenius eigenvalues and Monodromy, Amer. Math. Soc., Providence, RI, 1999. Zbl0958.11004MR1659828
- [12] M. Klemm – « Über die Reduktion von Permutationsmoduln », Math. Z.143 (1975), p. 113–117. Zbl0291.20007MR379639
- [13] Y. Manin – « The theory of commutative formal groups over fields of finite characteristic », Russian Math. Surveys18 (1963), p. 1–83. Zbl0128.15603MR157972
- [14] D. Masser – « Specialization of some hyperelliptic jacobians », Number Theory in Progress, volI (K. Györy, H. Iwaniec & J. Urbanowicz, éds.), de Gruyter, Berlin-New York, 1999, p. 293–307. Zbl0942.14015MR1689511
- [15] S. Mori – « The endomorphism rings of some abelian varieties », Japanese J. Math.2 (1976), p. 109–130. Zbl0339.14016MR453754
- [16] —, « The endomorphism rings of some abelian varieties, II », Japanese J. Math.3 (1977), p. 105–109. Zbl0379.14011MR529440
- [17] B. Mortimer – « The modular permutation representations of the known doubly transitive groups », Proc. London Math. Soc. 41 (1980), no. 3, p. 1–20. Zbl0393.20002MR579714
- [18] D. Mumford – Abelian varieties, 2nd éd., Oxford University Press, London, 1974. Zbl0326.14012MR282985
- [19] N. Nygaard – « Slopes of powers of Frobenius on crystalline cohomology », Ann. Sci. École Norm. Sup. 14 (1981), no. 4, p. 369–401. Zbl0519.14012MR654203
- [20] J.-P. Serre – « Revêtements des courbes algébriques », Séminaire Bourbaki 1991–92, Astérisque, vol. 206, Société Mathématique de France, Paris, 1992, Exposé no 749, p. 177–182; Œuvres, vol.IV, 157, pp.252–264. Zbl0798.14014
- [21] —, Topics in Galois Theory, Jones and Bartlett Publishers, Boston-London, 1992. MR1162313
- [22] A. Silverberg – « Fields of definition for homomorphisms of abelian varieties », J. Pure Applied Algebra77 (1992), p. 253–262. Zbl0808.14037MR1154704
- [23] A. Silverberg & Y. Zarhin – « Variations on a theme of Minkowski and Serre », J. Pure Applied Algebra111 (1996), p. 285–302. Zbl0885.14006MR1394358
- [24] N. Yui – « On the jacobian varieties of hyperelliptic curves over fields of characteristic », J. Algebra52 (1978), p. 378–410. Zbl0404.14008MR491717
- [25] Y. Zarhin – « Hyperelliptic jacobians without complex multiplication », Math. Res. Letters7 (2000), p. 123–132. Zbl0959.14013MR1748293
- [26] —, « Hyperelliptic jacobians and modular representations », Moduli of abelian varieties (G. van der Geer, C. Faber & F. Oort, éds.), Progress in Math., vol. 195, Birkhäuser, Basel-Boston-Berlin, 2001, p. 473–490. MR1827030
- [27] —, « Hyperelliptic jacobians without complex multiplication in positive characteristic », Math. Research Letters8 (2001), p. 429–435. Zbl1079.14512MR1849259
- [28] —, « Hyperelliptic Jacobians without Complex Multiplication, Doubly Transitive Permutation Groups and Projective Representations », Algebraic Number Theory and Algebraic Geometry (Parshin Festschrift), Contemporary Math., vol. 300, American Mathematical Society, Providence, RI, 2002, p. 195–210. Zbl0886.14001MR1936373
- [29] —, « Very simple -adic representations and hyperelliptic jacobians », Moscow Math. J. 2 (2002), no. 2, p. 403–431. Zbl1082.11039MR1944511
- [30] —, « Hyperelliptic jacobians and simple groups », Proc. Amer. Math. Soc. 131 (2003), no. 1, p. 95–102. Zbl1001.14012MR1929028
- [31] —, « Very simple representations: variations on a theme of Clifford », Progress in Galois Theory (H. Völklein & T. Shaska, éds.), Developments in Math., Kluwer, 2004, pp.151–168, to appear. Zbl1129.20006MR2148465
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.