On the Drazin index of regular elements
Open Mathematics (2009)
- Volume: 7, Issue: 2, page 200-205
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topPedro Patrício, and António Costa. "On the Drazin index of regular elements." Open Mathematics 7.2 (2009): 200-205. <http://eudml.org/doc/269234>.
@article{PedroPatrício2009,
abstract = {It is known that the existence of the group inverse a # of a ring element a is equivalent to the invertibility of a 2 a − + 1 − aa −, independently of the choice of the von Neumann inverse a − of a. In this paper, we relate the Drazin index of a to the Drazin index of a 2 a − + 1 − aa −. We give an alternative characterization when considering matrices over an algebraically closed field. We close with some questions and remarks.},
author = {Pedro Patrício, António Costa},
journal = {Open Mathematics},
keywords = {Drazin inverse; Drazin index; Dedekind finite ring; Regular ring; regular ring},
language = {eng},
number = {2},
pages = {200-205},
title = {On the Drazin index of regular elements},
url = {http://eudml.org/doc/269234},
volume = {7},
year = {2009},
}
TY - JOUR
AU - Pedro Patrício
AU - António Costa
TI - On the Drazin index of regular elements
JO - Open Mathematics
PY - 2009
VL - 7
IS - 2
SP - 200
EP - 205
AB - It is known that the existence of the group inverse a # of a ring element a is equivalent to the invertibility of a 2 a − + 1 − aa −, independently of the choice of the von Neumann inverse a − of a. In this paper, we relate the Drazin index of a to the Drazin index of a 2 a − + 1 − aa −. We give an alternative characterization when considering matrices over an algebraically closed field. We close with some questions and remarks.
LA - eng
KW - Drazin inverse; Drazin index; Dedekind finite ring; Regular ring; regular ring
UR - http://eudml.org/doc/269234
ER -
References
top- [1] Castro González N., Additive perturbation results for the Drazin inverse, Linear Algebra Appl., 2005, 397, 279–297 http://dx.doi.org/10.1016/j.laa.2004.11.001[Crossref][WoS] Zbl1071.15003
- [2] Cline R.E., An application of representation of a matrix, MRC Technical Report, 592, 1965
- [3] Drazin M.P., Pseudo inverses in associative rings and semigroups, Amer. Math. Monthly, 1958, 65, 506–514 http://dx.doi.org/10.2307/2308576[Crossref] Zbl0083.02901
- [4] Hartwig R.E., Luh J., On finite regular rings, Pacific J. Math., 1977, 69, 73–95 Zbl0326.16012
- [5] Hartwig R.E., Patricio P., A note on power bounded matrices, preprint
- [6] Hartwig R.E., Shoaf J., Group inverses and Drazin inverse of bidiagonal and triangular Toeplitz matrices, J. Austral. Math. Soc. Ser. A, 1977, 24, 10–34 http://dx.doi.org/10.1017/S1446788700020036[Crossref] Zbl0372.15003
- [7] Hartwig R.E., Wang G., Wei Y., Some additive results on Drazin inverses, Linear Algebra Appl., 2001, 322, 207–217 http://dx.doi.org/10.1016/S0024-3795(00)00257-3[Crossref] Zbl0967.15003
- [8] Patricio P., Puystjens R., Generalized invertibility in two semigroups of a ring, Linear Algebra Appl., 2004, 377, 125–139 http://dx.doi.org/10.1016/j.laa.2003.08.004[Crossref]
- [9] Puystjens R., Hartwig R.E., The group inverse of a companion matrix, Linear and Multilinear Algebra, 1997, 43, 137–150 http://dx.doi.org/10.1080/03081089708818521[Crossref] Zbl0890.15003
- [10] Roman S., Advanced linear algebra, Graduate Texts in Mathematics 135, Springer, New York, 2005 Zbl1085.15001
- [11] Schmoeger C., On Fredholm properties of operator products, Math. Proc. R. Ir. Acad. 103A, 2003, 2, 203–208 http://dx.doi.org/10.3318/PRIA.2003.103.2.203[Crossref] Zbl1084.47009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.