Fixed point results for multivalued contractions on ordered gauge spaces

Gabriela Petruşel

Open Mathematics (2009)

  • Volume: 7, Issue: 3, page 520-528
  • ISSN: 2391-5455

Abstract

top
The purpose of this article is to present fixed point results for multivalued E ≤-contractions on ordered complete gauge space. Our theorems generalize and extend some recent results given in M. Frigon [7], S. Reich [12], I.A. Rus and A. Petruşel [15] and I.A. Rus et al. [16].

How to cite

top

Gabriela Petruşel. "Fixed point results for multivalued contractions on ordered gauge spaces." Open Mathematics 7.3 (2009): 520-528. <http://eudml.org/doc/269251>.

@article{GabrielaPetruşel2009,
abstract = {The purpose of this article is to present fixed point results for multivalued E ≤-contractions on ordered complete gauge space. Our theorems generalize and extend some recent results given in M. Frigon [7], S. Reich [12], I.A. Rus and A. Petruşel [15] and I.A. Rus et al. [16].},
author = {Gabriela Petruşel},
journal = {Open Mathematics},
keywords = {Gauge space; Multivalued operator; Fixed point; Data dependence; gauge space; multivalued operator; fixed point; data dependence},
language = {eng},
number = {3},
pages = {520-528},
title = {Fixed point results for multivalued contractions on ordered gauge spaces},
url = {http://eudml.org/doc/269251},
volume = {7},
year = {2009},
}

TY - JOUR
AU - Gabriela Petruşel
TI - Fixed point results for multivalued contractions on ordered gauge spaces
JO - Open Mathematics
PY - 2009
VL - 7
IS - 3
SP - 520
EP - 528
AB - The purpose of this article is to present fixed point results for multivalued E ≤-contractions on ordered complete gauge space. Our theorems generalize and extend some recent results given in M. Frigon [7], S. Reich [12], I.A. Rus and A. Petruşel [15] and I.A. Rus et al. [16].
LA - eng
KW - Gauge space; Multivalued operator; Fixed point; Data dependence; gauge space; multivalued operator; fixed point; data dependence
UR - http://eudml.org/doc/269251
ER -

References

top
  1. [1] Agarwal R.P., Dshalalow J., O’Regan D., Fixed point and homotopy results for generalized contractive maps of Reich-type, Appl. Anal., 2003, 82, 329–350 http://dx.doi.org/10.1080/0003681031000098470 Zbl1039.47030
  2. [2] Chiş A., Precup R., Continuation theory for general contractions in gauge spaces, Fixed Point Theory Appl., 2004, 3, 173–185 Zbl1087.47050
  3. [3] Ćirić L.B., Fixed points for generalized multi-valued contractions, Mat. Vesnik, 1972, 9, 265–272 Zbl0258.54043
  4. [4] Ćirić L., Cakic N., Rajovic M., Ume J.S., Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl., 2008, ID 131294, 11 pages Zbl1158.54019
  5. [5] Dugundji J., Topology, Allyn & Bacon, Boston, 1966 
  6. [6] Espínola R., Petruşel A., Existence and data dependence of fixed points for multivalued operators on gauge spaces, J. Math. Anal. Appl., 2005, 309, 420–432 http://dx.doi.org/10.1016/j.jmaa.2004.07.006 Zbl1070.47046
  7. [7] Frigon M., Fixed point results for multivalued contractions in gauge spaces and applications, Set Valued Mappings with Applications in Nonlinear Analysis, Ser. Math. Anal. Appl., Vol. 4, Taylor & Francis, London, 2002, 175–181 
  8. [8] Frigon M., Fixed point and continuation results for contractions in metric and gauge spaces, Banach Center Publ., 2007, 77, 89–114 http://dx.doi.org/10.4064/bc77-0-8 Zbl1122.47045
  9. [9] Lakshmikantham V., Ciric L., Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis, T.M.A., 2009, 70, 4341–4349 http://dx.doi.org/10.1016/j.na.2008.09.020 Zbl1176.54032
  10. [10] Petruşel A., Petruşel G., Multivalued contractions of Feng-Liu type in complete gauge spaces, preprint Zbl1249.54088
  11. [11] Petruşel G., Existence and data dependence of fixed points and strict fixed points for mulivalued Y-contractions, Carpathian J. Math., 2007, 23, 172–176 Zbl1164.54388
  12. [12] Reich S., Fixed point of contractive functions, Boll. Un. Mat. Ital., 1972, 5, 26–42 Zbl0249.54026
  13. [13] Rus I.A., Generalized Contractions and Applications, Transilvania Press Cluj-Napoca, 2001 
  14. [14] Rus I.A., Fixed point theorems for multivalued mappings in complete metric spaces, Mathematica Japonica, 1975, 20, 21–24 Zbl0336.54047
  15. [15] Rus I.A., Petruşel A., Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc., 2005, 134, 411–419 http://dx.doi.org/10.1090/S0002-9939-05-07982-7 Zbl1086.47026
  16. [16] Rus I.A., Petruşel A., Petruşel G., Fixed point theorems for set-valued Y -contractions, Banach Center Publications, Fixed Point Theory and its Applications, 2007, 77, 227–237 http://dx.doi.org/10.4064/bc77-0-17 Zbl1126.47047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.