Contact integrable extensions and differential coverings for the generalized (2 + 1)-dimensional dispersionless Dym equation

Oleg Morozov

Open Mathematics (2012)

  • Volume: 10, Issue: 5, page 1688-1697
  • ISSN: 2391-5455

Abstract

top
The method of contact integrable extensions is used to find new differential coverings for the generalized (2 + 1)-dimensional dispersionless Dym equation and corresponding Bäcklund transformations.

How to cite

top

Oleg Morozov. "Contact integrable extensions and differential coverings for the generalized (2 + 1)-dimensional dispersionless Dym equation." Open Mathematics 10.5 (2012): 1688-1697. <http://eudml.org/doc/269269>.

@article{OlegMorozov2012,
abstract = {The method of contact integrable extensions is used to find new differential coverings for the generalized (2 + 1)-dimensional dispersionless Dym equation and corresponding Bäcklund transformations.},
author = {Oleg Morozov},
journal = {Open Mathematics},
keywords = {Lie pseudo-groups; Maurer-Cartan forms; Symmetries of differential equations; Differential coverings; symmetries of differential equations; differential coverings},
language = {eng},
number = {5},
pages = {1688-1697},
title = {Contact integrable extensions and differential coverings for the generalized (2 + 1)-dimensional dispersionless Dym equation},
url = {http://eudml.org/doc/269269},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Oleg Morozov
TI - Contact integrable extensions and differential coverings for the generalized (2 + 1)-dimensional dispersionless Dym equation
JO - Open Mathematics
PY - 2012
VL - 10
IS - 5
SP - 1688
EP - 1697
AB - The method of contact integrable extensions is used to find new differential coverings for the generalized (2 + 1)-dimensional dispersionless Dym equation and corresponding Bäcklund transformations.
LA - eng
KW - Lie pseudo-groups; Maurer-Cartan forms; Symmetries of differential equations; Differential coverings; symmetries of differential equations; differential coverings
UR - http://eudml.org/doc/269269
ER -

References

top
  1. [1] Alfinito E., Profilo G., Soliani G., Properties of equations of the continuous Toda type, J. Phys. A, 1997, 30(5), 1527–1547 http://dx.doi.org/10.1088/0305-4470/30/5/019 Zbl1001.35502
  2. [2] Błaszak M., Classical R-matrices on Poisson algebras and related dispersionless systems, Phys. Lett. A, 2002, 297(3–4), 191–195 http://dx.doi.org/10.1016/S0375-9601(02)00421-8 
  3. [3] Bryant R.L., Griffiths Ph.A., Characteristic cohomology of differential systems II: Conservation laws for a class of parabolic equations, Duke Math. J., 1995, 78(3), 531–676 http://dx.doi.org/10.1215/S0012-7094-95-07824-7 Zbl0853.58005
  4. [4] Cartan É., Sur la structure des groupes infinis de transformations, In: Œuvres complétes, 2(2), Gauthier-Villars, Paris, 1953, 571–714 
  5. [5] Cartan É., Les sous-groupes des groupes continus de transformations, In: Œuvres Complètes, 2(2), Gauthier-Villars, Paris, 1953, 719–856 
  6. [6] Cartan É., Les problèmes d’équivalence, In: Œuvres Complètes, 2(2), Gauthier-Villars, Paris, 1953, 1311–1334 
  7. [7] Cartan É., La structure des groupes infinis, In: Œuvres Complètes, 2(2), Gauthier-Villars, Paris, 1953, 1335–1384 
  8. [8] Dodd R., Fordy A., The prolongation structures of quasi-polynomial flows, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 1983, 385(1789), 389–429 http://dx.doi.org/10.1098/rspa.1983.0020 Zbl0542.35069
  9. [9] Dryuma V.S., Non-linear multi-dimensional equations related to commuting vector fields, and their integration, In: International Conference “Differential Equations and Related Topics” dedicated to I.G. Petrovskii, XXII Joint Session of Moscow Mathematical Society and Petrovskii Seminar, Moscow, May 21–26, Moscow State University, 2007 (book of abstracts, in Russian) 
  10. [10] Estabrook F.B., Moving frames and prolongation algebras, J. Math. Phys., 1982, 23(11), 2071–2076 http://dx.doi.org/10.1063/1.525248 Zbl0499.58001
  11. [11] Fels M., Olver P.J., Moving coframes: I. A practical algorithm, Acta Appl. Math., 1998, 51(2), 161–213 http://dx.doi.org/10.1023/A:1005878210297 Zbl0937.53012
  12. [12] Ferapontov E.V., Khusnutdinova K.R., On integrability of (2 + 1)-dimensional quasilinear systems, Comm. Math. Phys., 2004, 248(1), 187–206 http://dx.doi.org/10.1007/s00220-004-1079-6 Zbl1070.37047
  13. [13] Ferapontov E.V., Odesskii A.V., Stoilov N.M., Classification of integrable two-component Hamiltonian systems of hydrodynamic type in 2 + 1 dimensions, preprint available at http://arxiv.org/abs/1007.3782 Zbl1317.37071
  14. [14] Gardner R.B., The Method of Equivalence and its Applications, CBMS-NSF Regional Conf. Ser. in Appl. Math., 58, SIAM, Philadelphia, 1989 
  15. [15] Harrison B.K., On methods of finding Bäcklund transformations in systems with more than two independent variables, J. Nonlinear Math. Phys., 1995, 2(3–4), 201–215 http://dx.doi.org/10.2991/jnmp.1995.2.3-4.1 Zbl0936.35160
  16. [16] Harrison B.K., Matrix methods of searching for Lax pairs and a paper by Estévez, In: Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 30(1–2), Natsïonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, 2000, 17–24 Zbl0952.35121
  17. [17] Hoenselaers C., More prolongation structures, Progr. Theoret. Phys., 1986, 75(5), 1014–1029 http://dx.doi.org/10.1143/PTP.75.1014 
  18. [18] Igonin S., Coverings and fundamental algebras for partial differential equations, J. Geom. Phys., 2006, 56(6), 939–998 http://dx.doi.org/10.1016/j.geomphys.2005.06.001 Zbl1104.58009
  19. [19] Kamran N., Contributions to the Study of the Equivalence Problem of Élie Cartan and its Applications to Partial and Ordinary Differential Equations, Acad. Roy. Belg. Cl. Sci. Mém. Collect. 8, 45(7), Brussels, 1989 Zbl0721.58001
  20. [20] Krasil’shchik I.S., Vinogradov A.M., Nonlocal symmetries and the theory of coverings, Acta Appl. Math., 1984, 2(1), 79–86 http://dx.doi.org/10.1007/BF01405492 
  21. [21] Krasil’shchik I.S., Vinogradov A.M., Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations, Acta Appl. Math., 1989, 15(1–2), 161–209 http://dx.doi.org/10.1007/BF00131935 Zbl0692.35003
  22. [22] Kuzmina G.M., On geometry of a system of two partial differential equations, Moskov. Gos. Ped. Inst. Uchen. Zap., 1965, 243, 99–108 (in Russian) 
  23. [23] Kuzmina G.M., On a possibility to reduce a system of two partial differential equations of the first order to one equation of the second order, Moskov. Gos. Ped. Inst. Uchen. Zap., 1967, 271, 67–76 (in Russian) 
  24. [24] Marvan M., On zero-curvature representations of partial differential equations, In: Differential Geometry and its Applications, 1992, August 24–28, Opava, Math. Publ., 1, Silesian University in Opava, Opava, 1993, 103–122 Zbl0813.58056
  25. [25] Marvan M., A direct procedure to compute zero-curvature representations. The case sl2, In: Secondary Calculus and Cohomological Physics, Moscow, August 24–31, 1997, Diffiety Institute of the Russian Academy of Natural Sciences, Pereslavl’ Zalesskiy, 1997 
  26. [26] Morozov O.I., Moving coframes and symmetries of differential equations, J. Phys. A, 2002, 35(12), 2965–2977 http://dx.doi.org/10.1088/0305-4470/35/12/317 Zbl1040.35003
  27. [27] Morozov O.I., The contact-equivalence problem for linear hyperbolic equations, J. Math. Sci. (N.Y.), 2006, 135(1), 2680–2694 http://dx.doi.org/10.1007/s10958-006-0138-2 Zbl1112.35011
  28. [28] Morozov O.I., Coverings of differential equations and Cartan’s structure theory of Lie pseudo-groups, Acta Appl. Math., 2007, 99(3), 309–319 http://dx.doi.org/10.1007/s10440-007-9167-1 Zbl1143.58008
  29. [29] Morozov O.I., Cartan’s structure theory of symmetry pseudo-groups, coverings and multi-valued solutions for the Khokhlov-Zabolotskaya equation, Acta Appl. Math., 2008, 101(1–3), 231–241 http://dx.doi.org/10.1007/s10440-008-9191-9 Zbl1145.58007
  30. [30] Morozov O.I., Contact integrable extensions of symmetry pseudo-groups and coverings of (2 + 1) dispersionless integrable equations, J. Geom. Phys., 2009, 59(11), 1461–1475 http://dx.doi.org/10.1016/j.geomphys.2009.07.009 Zbl1186.58023
  31. [31] Morozov O.I., Contact integrable extensions and zero-curvature representations for the second heavenly equation, Global and Stochastic Analysis, 2011, 1, 89–100 Zbl1296.58008
  32. [32] Morozov O.I., A covering for the dKP-hyper CR interpolating equation and multi-valued Einstein-Weyl structures, preprint available at http://arxiv.org/abs/0903.3788 
  33. [33] Morozov O.I., Contact integrable extensions of symmetry pseudo-group and coverings for the r-th double modified dispersionless Kadomtsev-Petviashvili equation, preprint available at http://arxiv.org/abs/1010.1828 
  34. [34] Morris H.C., Prolongation structures and nonlinear evolution equations in two spatial dimensions, J. Math. Phys., 1976, 17(10), 1870–1872 http://dx.doi.org/10.1063/1.522809 
  35. [35] Morris H.C., Prolongation structures and nonlinear evolution equations in two spatial dimensions: a general class of equations, J. Phys. A, 1979, 12(3), 261–267 http://dx.doi.org/10.1088/0305-4470/12/3/003 
  36. [36] Nucci M.C., Pseudopotentials for nonlinear evolution equations in 2+1 orders, Internat. J. Non-Linear Mech., 1988, 23(5–6), 361–367 http://dx.doi.org/10.1016/0020-7462(88)90033-9 
  37. [37] Olver P.J., Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995 
  38. [38] Ovsienko V., Bi-Hamiltionian nature of the equation u tx = u xyu y − u yyu x, Adv. Pure Appl. Math., 2010, 1(1), 7–17 
  39. [39] Palese M., Bäcklund loop algebras for compact and noncompact nonlinear spin models in 2+1 dimensions, Theoret. and Math. Phys., 2005, 144(1), 1014–1021 http://dx.doi.org/10.1007/s11232-005-0129-3 Zbl1178.37103
  40. [40] Palese M., Leo R.A., Soliani G., The prolongation problem for the heavenly equation, In: Recent Developments in General Relativity, Bari, September 21–25, 1998, Springer, Milan, 2000 
  41. [41] Ritt J.F., Integration in Finite Terms. Liouville’s Theory of Elementary Methods, Columbia University Press, New York, 1948 Zbl0031.20603
  42. [42] Sakovich S.Yu., On zero-curvature representations of evolution equations, J. Phys. A, 1995, 28(10), 2861–2869 http://dx.doi.org/10.1088/0305-4470/28/10/016 Zbl0834.35116
  43. [43] Stormark O., Lie’s Structural Approach to PDE Systems, Encyclopedia Math. Appl., 80, Cambridge University Press, Cambridge, 2000 Zbl0959.35004
  44. [44] Tondo G.S., The eigenvalue problem for the three-wave resonant interaction in (2+1) dimensions via the prolongation structure, Lett. Nuovo Cimento, 1985, 44(5), 297–302 http://dx.doi.org/10.1007/BF02746684 
  45. [45] Vasilieva M.V., Structure of Infinite Lie Groups of Transformations, Moskov. Gosudarstv. Ped. Inst., Moscow, 1972 (in Russian) 
  46. [46] Wahlquist H.D., Estabrook F.B., Prolongation structures of nonlinear evolution equations, J. Math. Phys., 1975, 16, 1–7 http://dx.doi.org/10.1063/1.522396 Zbl0298.35012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.