# The jump of the Milnor number in the X 9 singularity class

Szymon Brzostowski; Tadeusz Krasiński

Open Mathematics (2014)

- Volume: 12, Issue: 3, page 429-435
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topSzymon Brzostowski, and Tadeusz Krasiński. "The jump of the Milnor number in the X 9 singularity class." Open Mathematics 12.3 (2014): 429-435. <http://eudml.org/doc/269289>.

@article{SzymonBrzostowski2014,

abstract = {The jump of the Milnor number of an isolated singularity f 0 is the minimal non-zero difference between the Milnor numbers of f 0 and one of its deformations (f s). We prove that for the singularities in the X 9 singularity class their jumps are equal to 2.},

author = {Szymon Brzostowski, Tadeusz Krasiński},

journal = {Open Mathematics},

keywords = {Milnor number; Singularity; Deformation of singularity; singularity; deformation of singularity},

language = {eng},

number = {3},

pages = {429-435},

title = {The jump of the Milnor number in the X 9 singularity class},

url = {http://eudml.org/doc/269289},

volume = {12},

year = {2014},

}

TY - JOUR

AU - Szymon Brzostowski

AU - Tadeusz Krasiński

TI - The jump of the Milnor number in the X 9 singularity class

JO - Open Mathematics

PY - 2014

VL - 12

IS - 3

SP - 429

EP - 435

AB - The jump of the Milnor number of an isolated singularity f 0 is the minimal non-zero difference between the Milnor numbers of f 0 and one of its deformations (f s). We prove that for the singularities in the X 9 singularity class their jumps are equal to 2.

LA - eng

KW - Milnor number; Singularity; Deformation of singularity; singularity; deformation of singularity

UR - http://eudml.org/doc/269289

ER -

## References

top- [1] Arnold V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of Differentiable Maps, I, Monogr. Math., 82, Birkhäuser, Boston, 1985 http://dx.doi.org/10.1007/978-1-4612-5154-5[Crossref]
- [2] Bodin A., Jump of Milnor numbers, Bull. Braz. Math. Soc. (N.S.), 2007, 38(3), 389–396 http://dx.doi.org/10.1007/s00574-007-0051-4[Crossref] Zbl1131.32015
- [3] Ebeling W., Functions of Several Complex Variables and their Singularities, Grad. Stud. Math., 83, American Mathematical Society, Providence, 2007
- [4] Greuel G.-M., Lossen C., Shustin E., Introduction to Singularities and Deformations, Springer Monogr. Math., Springer, Berlin, 2007 Zbl1125.32013
- [5] Gwoździewicz J., Płoski A., Formulae for the singularities at infinity of plane algebraic curves, Univ. Iagel. Acta Math., 2001, 39, 109–133 Zbl1015.32026
- [6] Gusein-Zade S.M., On singularities from which an A 1 can be split off, Funct. Anal. Appl., 1993, 27(1), 57–59 http://dx.doi.org/10.1007/BF01768670[Crossref]
- [7] Kouchnirenko A.G., Polyèdres de Newton et nombres de Milnor, Invent. Math., 1976, 32(1), 1–31 http://dx.doi.org/10.1007/BF01389769[Crossref] Zbl0328.32007
- [8] Martinet J., Singularities of Smooth Functions and Maps London, Math. Soc. Lecture Note Ser., 58, Cambridge University Press, Cambridge, 1982 Zbl0522.58006
- [9] Płoski A., Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of C 2, Ann. Polon. Math., 1990, 51, 275–281 Zbl0764.32012
- [10] Płoski A., Milnor number of a plane curve and Newton polygons, Univ. Iagel. Acta Math., 1999, 37, 75–80 Zbl0997.32021
- [11] Walewska J., The second jump of Milnor numbers, Demonstratio Math., 2010, 43(2), 361–374 Zbl1202.32024
- [12] Wall C.T.C., Finite determinacy of smooth map-germs, Bull. London Math. Soc., 1981, 13(6), 481–539 http://dx.doi.org/10.1112/blms/13.6.481[Crossref]

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.