Page 1

Displaying 1 – 10 of 10

Showing per page

An explicit formula for period determinant

Alexey A. Glutsyuk (2006)

Annales de l’institut Fourier

We consider a generic complex polynomial in two variables and a basis in the first homology group of a nonsingular level curve. We take an arbitrary tuple of homogeneous polynomial 1-forms of appropriate degrees so that their integrals over the basic cycles form a square matrix (of multivalued analytic functions of the level value). We give an explicit formula for the determinant of this matrix.

Invariants of equidimensional maps

Joachim H. Rieger (2003)

Banach Center Publications

To a given complex-analytic equidimensional corank-1 germ f, one can associate a set of integer 𝓐-invariants such that f is 𝓐-finite if and only if all these invariants are finite. An analogous result holds for corank-1 germs for which the source dimension is smaller than the target dimension.

Matrice magique associée à un germe de courbe plane et division par l’idéal jacobien

Joël Briançon, Philippe Maisonobe, Tristan Torrelli (2007)

Annales de l’institut Fourier

Nous nous donnons, dans l’anneau des germes de fonctions holomorphes à l’origine de 2 , une fonction f définissant une singularité isolée et nous nous intéressons à l’équation u f x + v f y = w f , lorsque la fonction w est donnée. Nous introduisons les multiplicités d’intersection relatives de w et f y le long des branches de f et nous étudions les solutions à l’aide de ces valuations. Grâce aux résultats ainsi démontrés, nous construisons explicitement une équation fonctionnelle vérifiée par f .

On higher dimensional Hirzebruch-Jung singularities.

Patrick Popescu-Pampu (2005)

Revista Matemática Complutense

A germ of normal complex analytical surface is called a Hirzebruch-Jung singularity if it is analytically isomorphic to the germ at the 0-dimensional orbit of an affine toric surface. Two such germs are known to be isomorphic if and only if the toric surfaces corresponding to them are equivariantly isomorphic. We extend this result to higher-dimensional Hirzebruch-Jung singularities, which we define to be the germs analytically isomorphic to the germ at the 0-dimensional orbit of an affine toric...

Remarks on the generalized index of an analytic improper intersection

Krzysztof Jan Nowak (2003)

Annales Polonici Mathematici

This article continues the investigation of the analytic intersection algorithm from the perspective of deformation to the normal cone, carried out in the previous papers of the author [7, 8, 9]. The main theorem asserts that, given an analytic set V and a linear subspace S, every collection of hyperplanes, admissible with respect to an algebraic bicone B, realizes the generalized intersection index of V and S. This result is important because the conditions for a collection of hyperplanes to be...

The jump of the Milnor number in the X 9 singularity class

Szymon Brzostowski, Tadeusz Krasiński (2014)

Open Mathematics

The jump of the Milnor number of an isolated singularity f 0 is the minimal non-zero difference between the Milnor numbers of f 0 and one of its deformations (f s). We prove that for the singularities in the X 9 singularity class their jumps are equal to 2.

Currently displaying 1 – 10 of 10

Page 1