On the lattice of n-filters of an LM n-algebra

Dumitru Buşneag; Florentina Chirteş

Open Mathematics (2007)

  • Volume: 5, Issue: 3, page 470-483
  • ISSN: 2391-5455

Abstract

top
For an n-valued Łukasiewicz-Moisil algebra L (or LM n-algebra for short) we denote by F n(L) the lattice of all n-filters of L. The goal of this paper is to study the lattice F n(L) and to give new characterizations for the meet-irreducible and completely meet-irreducible elements on F n(L).

How to cite

top

Dumitru Buşneag, and Florentina Chirteş. "On the lattice of n-filters of an LM n-algebra." Open Mathematics 5.3 (2007): 470-483. <http://eudml.org/doc/269290>.

@article{DumitruBuşneag2007,
abstract = {For an n-valued Łukasiewicz-Moisil algebra L (or LM n-algebra for short) we denote by F n(L) the lattice of all n-filters of L. The goal of this paper is to study the lattice F n(L) and to give new characterizations for the meet-irreducible and completely meet-irreducible elements on F n(L).},
author = {Dumitru Buşneag, Florentina Chirteş},
journal = {Open Mathematics},
keywords = {LMn-algebra; n-filter; prime n-filter; meet-irreducible n-filter; completely meet-irreducible n-filter},
language = {eng},
number = {3},
pages = {470-483},
title = {On the lattice of n-filters of an LM n-algebra},
url = {http://eudml.org/doc/269290},
volume = {5},
year = {2007},
}

TY - JOUR
AU - Dumitru Buşneag
AU - Florentina Chirteş
TI - On the lattice of n-filters of an LM n-algebra
JO - Open Mathematics
PY - 2007
VL - 5
IS - 3
SP - 470
EP - 483
AB - For an n-valued Łukasiewicz-Moisil algebra L (or LM n-algebra for short) we denote by F n(L) the lattice of all n-filters of L. The goal of this paper is to study the lattice F n(L) and to give new characterizations for the meet-irreducible and completely meet-irreducible elements on F n(L).
LA - eng
KW - LMn-algebra; n-filter; prime n-filter; meet-irreducible n-filter; completely meet-irreducible n-filter
UR - http://eudml.org/doc/269290
ER -

References

top
  1. [1] R. Balbes and Ph. Dwinger: Distributive Lattices, University of Missouri Press, 1974. 
  2. [2] G. Birkhoff: Lattice theory, (3rd Edition, 2nd Printing), Amer. Math. Soc., Colloquium Publications XXV, 1973. 
  3. [3] V. Boicescu, A. Filipoiu, G. Georgescu and S. Rudeanu: Łukasiewicz-Moisil Algebras, North Holland, 1991. 
  4. [4] R. Cignoli: “Boolean multiplicative closures I y II”, P. Jpn. Acad., Vol. 42, (1965), pp. 1168–1174. http://dx.doi.org/10.3792/pja/1195521767 Zbl0149.25703
  5. [5] R. Cignoli: Algebras de Moisil de orden n, Thesis (PhD), Universidad National del Sur Bahía Blanca, 1969. 
  6. [6] R. Cignoli: Moisil Algebras, Notas de Lógica Matemática, 27, Univ. National del Sur, Bahía Blanca, 1970. 
  7. [7] G. Georgescu and M. Ploščcica: “Values and minimal spectrum of an algebric lattice”, Math. Slovaca, Vol. 52, (2002), pp. 247–253. 
  8. [8] G. Grätzer: Lattice theory, W. H. Freeman and Company, San Francisco, 1979. 
  9. [9] A. Iorgulescu: (1+0)-valued Łuksiewicz-Moisil algebras with negation, Thesis (PhD), Univ. of Bucharest, 1984. 
  10. [10] Gr.C. Moisil: “Recherches sur les logiques non-chrysippienns,” An. Sci. Univ. Jassy, Vol. 26, (1940), pp. 195–232. 
  11. [11] Gr.C. Moisil: “Applicationi dell’algebra alle calculatrici moderne”, In: Atti 2 a Reunione del Groupement des Math. d’Expression Latine, 26.IX-3.X.1961, Ed. Cremonese, Roma. 
  12. [12] Gr.C. Moisil: “Łukasiewiczian algebras”, Preprint: Computing Center, Univ. Bucharest, 1968, pp. 311–324. 
  13. [13] A. Monteiro: ”L’arithmétique des filtres et les espaces topologiques”, In:’ it Segundo Symposium Americano de Mat., Centro de Cooperatión Científica de la UNESCO para América Latina, Montevideo, 1954, pp. 129–162. 
  14. [14] A. Monteiro: “Construction des algèbres de Łukasiewicz trivalentes dans les algèbres de Boole monadiques”, Math. Japon. Vol. 12, (1967), pp. 1–23. Zbl0165.30903

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.