Symplectic structures on moduli spaces of framed sheaves on surfaces

Francesco Sala

Open Mathematics (2012)

  • Volume: 10, Issue: 4, page 1455-1471
  • ISSN: 2391-5455

Abstract

top
We provide generalizations of the notions of Atiyah class and Kodaira-Spencer map to the case of framed sheaves. Moreover, we construct closed two-forms on the moduli spaces of framed sheaves on surfaces. As an application, we define a symplectic structure on the moduli spaces of framed sheaves on some birationally ruled surfaces.

How to cite

top

Francesco Sala. "Symplectic structures on moduli spaces of framed sheaves on surfaces." Open Mathematics 10.4 (2012): 1455-1471. <http://eudml.org/doc/269294>.

@article{FrancescoSala2012,
abstract = {We provide generalizations of the notions of Atiyah class and Kodaira-Spencer map to the case of framed sheaves. Moreover, we construct closed two-forms on the moduli spaces of framed sheaves on surfaces. As an application, we define a symplectic structure on the moduli spaces of framed sheaves on some birationally ruled surfaces.},
author = {Francesco Sala},
journal = {Open Mathematics},
keywords = {Framed sheaves; Moduli spaces; Instantons; Atiyah class; Symplectic structures; framed sheaves; instantons; moduli; symplectic structure; Kodaira - Spencer map; algebraic surface},
language = {eng},
number = {4},
pages = {1455-1471},
title = {Symplectic structures on moduli spaces of framed sheaves on surfaces},
url = {http://eudml.org/doc/269294},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Francesco Sala
TI - Symplectic structures on moduli spaces of framed sheaves on surfaces
JO - Open Mathematics
PY - 2012
VL - 10
IS - 4
SP - 1455
EP - 1471
AB - We provide generalizations of the notions of Atiyah class and Kodaira-Spencer map to the case of framed sheaves. Moreover, we construct closed two-forms on the moduli spaces of framed sheaves on surfaces. As an application, we define a symplectic structure on the moduli spaces of framed sheaves on some birationally ruled surfaces.
LA - eng
KW - Framed sheaves; Moduli spaces; Instantons; Atiyah class; Symplectic structures; framed sheaves; instantons; moduli; symplectic structure; Kodaira - Spencer map; algebraic surface
UR - http://eudml.org/doc/269294
ER -

References

top
  1. [1] Atiyah M.F., Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc., 1957, 85, 181–207 http://dx.doi.org/10.1090/S0002-9947-1957-0086359-5 Zbl0078.16002
  2. [2] Bănică C., Putinar M., Schumacher G., Variation der globalen Ext in Deformationen kompakter komplexer Räume, Math. Ann., 1980, 250(2), 135–155 http://dx.doi.org/10.1007/BF01364455 Zbl0438.32007
  3. [3] Beauville A., Complex Algebraic Surfaces, London Math. Soc. Stud. Texts, 34, Cambridge University Press, Cambridge, 1996 http://dx.doi.org/10.1017/CBO9780511623936 Zbl0849.14014
  4. [4] Bottacin F., Poisson structures on moduli spaces of sheaves over Poisson surfaces, Invent. Math., 1995, 121(2), 421–436 http://dx.doi.org/10.1007/BF01884307 Zbl0829.14019
  5. [5] Bottacin F., Poisson structures on moduli spaces of framed vector bundles on surfaces, Math. Nachr., 2000, 220, 33–44 http://dx.doi.org/10.1002/1522-2616(200012)220:1<33::AID-MANA33>3.0.CO;2-A Zbl1012.14002
  6. [6] Bruzzo U., Markushevish D., Moduli of framed sheaves on projective surfaces, Doc. Math., 2011, 16, 399–410 Zbl1222.14022
  7. [7] Gasparim E., Liu C.-C.M., The Nekrasov conjecture for toric surfaces, Comm. Math. Phys., 2010, 293(3), 661–700 http://dx.doi.org/10.1007/s00220-009-0948-4 Zbl1194.14066
  8. [8] Hartshorne R., Algebraic Geometry, Grad. Texts in Math., 52, Springer, New York-Heidelberg, 1977 
  9. [9] Huybrechts D., Lehn M., Stable pairs on curves and surfaces, J. Algebraic Geom., 1995, 4(1), 67–104 Zbl0839.14023
  10. [10] Huybrechts D., Lehn M., Framed modules and their moduli, Internat. J. Math., 1995, 6(2), 297–324 http://dx.doi.org/10.1142/S0129167X9500050X Zbl0865.14004
  11. [11] Huybrechts D., Lehn M., The Geometry of Moduli Spaces of Sheaves, 2nd ed., Cambridge Math. Lib., Cambridge University Press, Cambridge, 2010 http://dx.doi.org/10.1017/CBO9780511711985 Zbl1206.14027
  12. [12] Illusie L., Complexe Cotangent et Déformations. I, Lecture Notes in Math., 239, Springer, Berlin-New York, 1971 Zbl0224.13014
  13. [13] Illusie L., Complexe Cotangent et Déformations. II, Lecture Notes in Math., 283, Springer, Berlin-New York, 1972 Zbl0238.13017
  14. [14] Lehn M., Modulräume gerahmter Vektorbündel, PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1992, Bonner Math. Schriften, 241, Universität Bonn, Mathematisches Institut, Bonn, 1993 
  15. [15] Maakestad H., On jets, extensions and characteristic classes. I, J. Gen. Lie Theory Appl., 2010, 4, #G091101 Zbl1316.58015
  16. [16] Mukai S., Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math., 1984, 77(1), 101–116 http://dx.doi.org/10.1007/BF01389137 Zbl0565.14002
  17. [17] Mukai S., Moduli of vector bundles on K3 surfaces and symplectic manifolds, Sūgaku, 1987, 39(3), 216–235 Zbl0651.14003
  18. [18] Nakajima H., Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Ser., 18, American Mathematical Society, Providence, 1999 
  19. [19] Nevins T.A., Representability for some moduli stacks of framed sheaves, Manuscripta Math., 2002, 109(1), 85–91 http://dx.doi.org/10.1007/s00229-002-0290-z Zbl1057.14019
  20. [20] Nevins T.A., Moduli spaces of framed sheaves on certain ruled surfaces over elliptic curves, Internat. J. Math., 2002, 13(10), 1117–1151 http://dx.doi.org/10.1142/S0129167X02001599 Zbl1058.14060
  21. [21] O’Grady K.G., Algebro-geometric analogues of Donaldson’s polynomials, Invent. Math., 1992, 107(2), 351–395 http://dx.doi.org/10.1007/BF01231894 Zbl0769.14008
  22. [22] Ran Z., On the local geometry of moduli spaces of locally free sheaves, In: Moduli of Vector Bundles, Sanda-Kyoto, 1994, Lecture Notes in Pure and Appl. Math., 179, Marcel Dekker, New York, 1996 
  23. [23] Rava C., ADHM Data for Framed Sheaves on Hirzebruch Surfaces, PhD thesis, SISSA, Trieste, 2012 
  24. [24] Sala F., Some Topics in the Geometry of Framed Sheaves and their Moduli Spaces, PhD thesis, SISSA, Trieste and Université Lille 1, 2011 
  25. [25] Tyurin A.N., Symplectic structures on the moduli spaces of vector bundles on algebraic surfaces with p g > 0, Math. USSR-Izv., 1989, 33(1), 139–177 http://dx.doi.org/10.1070/IM1989v033n01ABEH000818 Zbl0673.14021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.