Characterization of equilibrium measures for critical reversible Nearest Particle Systems
Open Mathematics (2008)
- Volume: 6, Issue: 2, page 237-261
- ISSN: 2391-5455
Access Full Article
topAbstract
top
and obeys some natural regularity conditions.
How to cite
topReferences
top- [1] Andjel E., Liggett T.M., Mountford T., Clustering in one dimensional threshold voter models, Stochastic Process. Appl., 1992, 42, 73–90 http://dx.doi.org/10.1016/0304-4149(92)90027-N Zbl0752.60086
- [2] Bezuidenhout C., Grimmett G., The critical contact process dies out, Ann. Probab., 1990, 18, 1462–1482 http://dx.doi.org/10.1214/aop/1176990627 Zbl0718.60109
- [3] Diaconis P., Stroock D., Genmetric bounds for eigenvalues of Markov chains, Ann. Appl. Probab., 1991, 1, 36–61 http://dx.doi.org/10.1214/aoap/1177005980 Zbl0731.60061
- [4] Griffeath D., Liggett T.M., Critical phenomena for Spitzer’s reversible nearest particle systems, Ann. Probab., 1982, 10, 881–895 http://dx.doi.org/10.1214/aop/1176993711 Zbl0498.60090
- [5] Liggett T.M., Interacting particle systems, Springer-Verlag, New York, 1985 Zbl0559.60078
- [6] Liggett T.M., L 2 rates of convergence for attractive reversible nearest particle systems: the critical case, Ann. Probab., 1991, 19, 935–959 http://dx.doi.org/10.1214/aop/1176990330 Zbl0737.60092
- [7] Liggett T.M., Branching random walks and contact processes on homogenous trees, Probab. Theory Related Fields, 1996, 106, 495–519 http://dx.doi.org/10.1007/s004400050073
- [8] Mountford T., A complete convergence theorem for attractive reversible nearest particle systems, Canad. J. Math., 1997, 49, 321–337 Zbl0891.60092
- [9] Mountford T., A convergence result for critical reversible nearest particle systems, Ann. Probab., 2002, 30, 1–61 Zbl1061.60108
- [10] Mountford T., Sweet T., Finite approximations to the critical reversible nearest particle system, Ann. Probab., 1998, 26, 1751–1780 http://dx.doi.org/10.1214/aop/1022855881 Zbl0966.82013
- [11] Mountford T., Wu L.C., The time for a critical nearest particle system to reach equilibrium starting with a large gap, Electron. J. Probab., 2005, 10, 436–498 Zbl1111.60078
- [12] Schinazi R., Brownian fluctuations of the edge for critical reversible nearest-particle systems, Ann. Probab., 1992, 20, 194–205 http://dx.doi.org/10.1214/aop/1176989924 Zbl0742.60108
- [13] Sinclair A., Jerrum M., Approximate counting uniform generation and rapidly mixing Markov chains, Inform. and Comput., 1989, 82, 93–133 http://dx.doi.org/10.1016/0890-5401(89)90067-9 Zbl0668.05060
- [14] Spitzer F., Stochastic time evolution of one dimensional infinite particle systems, Bull. Amer. Math. Soc., 1977, 83, 880–890 http://dx.doi.org/10.1090/S0002-9904-1977-14322-X Zbl0372.60149
- [15] Sweet T.D., One dimensional spin systems, PhD thesis, University of California, Los Angeles, USA, 1997