Addendum to “Ring elements as sums of units”
Open Mathematics (2013)
- Volume: 11, Issue: 5, page 984-984
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topCharles Lanski, and Attila Maróti. "Addendum to “Ring elements as sums of units”." Open Mathematics 11.5 (2013): 984-984. <http://eudml.org/doc/269323>.
@article{CharlesLanski2013,
abstract = {We give a comment to Theorem 1.1 published in our paper “Ring elements as sums of units” [Cent. Eur. J. Math., 2009, 7(3), 395–399].},
author = {Charles Lanski, Attila Maróti},
journal = {Open Mathematics},
keywords = {Artinian rings; Units; Hamiltonian cycle; sums of units; Hamiltonian cycles; finite rings},
language = {eng},
number = {5},
pages = {984-984},
title = {Addendum to “Ring elements as sums of units”},
url = {http://eudml.org/doc/269323},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Charles Lanski
AU - Attila Maróti
TI - Addendum to “Ring elements as sums of units”
JO - Open Mathematics
PY - 2013
VL - 11
IS - 5
SP - 984
EP - 984
AB - We give a comment to Theorem 1.1 published in our paper “Ring elements as sums of units” [Cent. Eur. J. Math., 2009, 7(3), 395–399].
LA - eng
KW - Artinian rings; Units; Hamiltonian cycle; sums of units; Hamiltonian cycles; finite rings
UR - http://eudml.org/doc/269323
ER -
References
top- [1] Ashrafi N., Vámos P., On the unit sum number of some rings, Q. J. Math., 2005, 56(1), 1–12 http://dx.doi.org/10.1093/qmath/hah023 Zbl1100.11036
- [2] Lanski Ch., Maróti A., Ring elements as sums of units, Cent. Eur. J. Math., 2009, 7(3), 395–399 http://dx.doi.org/10.2478/s11533-009-0024-5 Zbl1185.16026
- [3] Vámos P., 2-good rings, Q. J. Math., 2005, 56(3), 417–430 http://dx.doi.org/10.1093/qmath/hah046
- [4] Zelinsky D., Every linear transformation is a sum of nonsingular ones, Proc. Amer. Math. Soc., 1954, 5(4), 627–630 http://dx.doi.org/10.1090/S0002-9939-1954-0062728-7 Zbl0056.11002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.