Local geometry of orbits for an ordinary classical lie supergroup

Tomasz Przebinda

Open Mathematics (2006)

  • Volume: 4, Issue: 3, page 449-506
  • ISSN: 2391-5455

Abstract

top
In this paper we identify a real reductive dual pair of Roger Howe with an Ordinary Classical Lie supergroup. In these terms we describe the semisimple orbits of the dual pair in the symplectic space, a slice through a semisimple element of the symplectic space, an analog of a Cartan subalgebra, the corresponding Weyl group and the corresponding Weyl integration formula.

How to cite

top

Tomasz Przebinda. "Local geometry of orbits for an ordinary classical lie supergroup." Open Mathematics 4.3 (2006): 449-506. <http://eudml.org/doc/269329>.

@article{TomaszPrzebinda2006,
abstract = {In this paper we identify a real reductive dual pair of Roger Howe with an Ordinary Classical Lie supergroup. In these terms we describe the semisimple orbits of the dual pair in the symplectic space, a slice through a semisimple element of the symplectic space, an analog of a Cartan subalgebra, the corresponding Weyl group and the corresponding Weyl integration formula.},
author = {Tomasz Przebinda},
journal = {Open Mathematics},
keywords = {17B05; 17B75; 22E15},
language = {eng},
number = {3},
pages = {449-506},
title = {Local geometry of orbits for an ordinary classical lie supergroup},
url = {http://eudml.org/doc/269329},
volume = {4},
year = {2006},
}

TY - JOUR
AU - Tomasz Przebinda
TI - Local geometry of orbits for an ordinary classical lie supergroup
JO - Open Mathematics
PY - 2006
VL - 4
IS - 3
SP - 449
EP - 506
AB - In this paper we identify a real reductive dual pair of Roger Howe with an Ordinary Classical Lie supergroup. In these terms we describe the semisimple orbits of the dual pair in the symplectic space, a slice through a semisimple element of the symplectic space, an analog of a Cartan subalgebra, the corresponding Weyl group and the corresponding Weyl integration formula.
LA - eng
KW - 17B05; 17B75; 22E15
UR - http://eudml.org/doc/269329
ER -

References

top
  1. [1] N. Burgoyne and R. Cushman: “Conjugacy Classes in Linear Groups”, J. Algebra, Vol. 44, (1975), pp. 339–362. http://dx.doi.org/10.1016/0021-8693(77)90186-7 
  2. [2] D. Collingwood and W. McGovern: Nilpotent orbits in complex semisimple Lie algebras, Reinhold, Van Nostrand, New York, 1993. Zbl0972.17008
  3. [3] A. Daszkiewicz, W. Kraśkiewicz and T. Przebinda: “Dual Pairs and Kostant-Sekiguchi Correspondence. II. Classification of Nilpotent Elements”, Centr. Eur. J. Math., Vol. 3, (2005), pp. 430–464. Zbl1107.22007
  4. [4] Harish-Chandra: “Invariant Distributions on Lie algebras”, Amer. J. of Math., Vol. 86, (1964), pp. 271–309. Zbl0131.33302
  5. [5] R. Howe: Analytic Preliminaries, preprint. 
  6. [6] R. Howe: “Remarks on classical invariant theory”, Trans. Amer. Math. Soc., Vol. 313, (1989), pp. 539–570 http://dx.doi.org/10.2307/2001418 Zbl0674.15021
  7. [7] R. Howe: “Transcending Classical Invariant Theory”, J. Amer. Math. Soc., Vol. 2, (1989), pp. 535–552. http://dx.doi.org/10.2307/1990942 Zbl0716.22006
  8. [8] V. Kac: “Lie superalgebras”, Adv. Math., Vol. 26, (1977), pp. 8–96. http://dx.doi.org/10.1016/0001-8708(77)90017-2 
  9. [9] B. Kostant: Graded manifolds, graded Lie theory, and prequantization, Lecture Notes in Math., Vol. 570, Springer-Verlag, Berlin-New York, 1977, pp. 177–306. 
  10. [10] M. Spivak: A comprehensive introduction to differential geometry, Brandeis University, Waltham, Massachusetts, 1970. 
  11. [11] V.S. Varadarajan: Harmonic Analysis on Real Reductive Groups I and II, Lecture Notes in Math., Vol. 576, Springer Verlag, 1977. Zbl0354.43001
  12. [12] N. Wallach: Real Reductive Groups I, Academic Press, INC, 1988. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.