Dual pairs and Kostant-Sekiguchi correspondence. II. Classification of nilpotent elements

Andrzej Daszkiewicz; Witold Kraśkiewicz; Tomasz Przebinda

Open Mathematics (2005)

  • Volume: 3, Issue: 3, page 430-474
  • ISSN: 2391-5455

Abstract

top
We classify the homogeneous nilpotent orbits in certain Lie color algebras and specialize the results to the setting of a real reductive dual pair. For any member of a dual pair, we prove the bijectivity of the two Kostant-Sekiguchi maps by straightforward argument. For a dual pair we determine the correspondence of the real orbits, the correspondence of the complex orbits and explain how these two relations behave under the Kostant-Sekiguchi maps. In particular we prove that for a dual pair in the stable range there is a Kostant-Sekiguchi map such that the conjecture formulated in [6] holds. We also show that the conjecture cannot be true in general.

How to cite

top

Andrzej Daszkiewicz, Witold Kraśkiewicz, and Tomasz Przebinda. "Dual pairs and Kostant-Sekiguchi correspondence. II. Classification of nilpotent elements." Open Mathematics 3.3 (2005): 430-474. <http://eudml.org/doc/268787>.

@article{AndrzejDaszkiewicz2005,
abstract = {We classify the homogeneous nilpotent orbits in certain Lie color algebras and specialize the results to the setting of a real reductive dual pair. For any member of a dual pair, we prove the bijectivity of the two Kostant-Sekiguchi maps by straightforward argument. For a dual pair we determine the correspondence of the real orbits, the correspondence of the complex orbits and explain how these two relations behave under the Kostant-Sekiguchi maps. In particular we prove that for a dual pair in the stable range there is a Kostant-Sekiguchi map such that the conjecture formulated in [6] holds. We also show that the conjecture cannot be true in general.},
author = {Andrzej Daszkiewicz, Witold Kraśkiewicz, Tomasz Przebinda},
journal = {Open Mathematics},
keywords = {20G05; 17B75; 22E45},
language = {eng},
number = {3},
pages = {430-474},
title = {Dual pairs and Kostant-Sekiguchi correspondence. II. Classification of nilpotent elements},
url = {http://eudml.org/doc/268787},
volume = {3},
year = {2005},
}

TY - JOUR
AU - Andrzej Daszkiewicz
AU - Witold Kraśkiewicz
AU - Tomasz Przebinda
TI - Dual pairs and Kostant-Sekiguchi correspondence. II. Classification of nilpotent elements
JO - Open Mathematics
PY - 2005
VL - 3
IS - 3
SP - 430
EP - 474
AB - We classify the homogeneous nilpotent orbits in certain Lie color algebras and specialize the results to the setting of a real reductive dual pair. For any member of a dual pair, we prove the bijectivity of the two Kostant-Sekiguchi maps by straightforward argument. For a dual pair we determine the correspondence of the real orbits, the correspondence of the complex orbits and explain how these two relations behave under the Kostant-Sekiguchi maps. In particular we prove that for a dual pair in the stable range there is a Kostant-Sekiguchi map such that the conjecture formulated in [6] holds. We also show that the conjecture cannot be true in general.
LA - eng
KW - 20G05; 17B75; 22E45
UR - http://eudml.org/doc/268787
ER -

References

top
  1. [1] G. Benkart, Ch.L. Shader and A. Ram: “Tensor product representations for orthosymplectic Lie superalgebras”, J. Pure Appl. Algebra, Vol. 130(1), (1998), pp. 1–48. http://dx.doi.org/10.1016/S0022-4049(97)00084-4 Zbl0932.17008
  2. [2] N. Burgoyne and R. Cushman: “Conjugacy Classes in Linear Groups”, Journal of Algebra, Vol. 44, (1975), pp. 339–362. http://dx.doi.org/10.1016/0021-8693(77)90186-7 
  3. [3] D. Barbasch and M. Sepanski: “Closure ordering and the Kostant-Sekiguchi correspondence”, Proc. Amer. Math. Soc., Vol. 126(1), (1998), pp. 311–317. http://dx.doi.org/10.1090/S0002-9939-98-04090-8 Zbl0896.22004
  4. [4] D. Collingwood and W. McGovern: Nilpotent orbits in complex semisimple Lie algebras, Reinhold, Van Nostrand, New York, 1993. Zbl0972.17008
  5. [5] A. Daszkiewicz, W. Kraśkiewicz and T. Przebinda: “Nilpotent Orbits and Complex Dual Pairs”, J. Algebra, Vol. 190, (1997), pp. 518–539. http://dx.doi.org/10.1006/jabr.1996.6910 
  6. [6] A. Daszkiewicz, W. Kraśkiewicz and T. Przebinda: “Dual Pairs and Kostant-Sekiguchi Correspondence. I.”, J. Algebra, Vol. 250, (2002), pp. 408–426. http://dx.doi.org/10.1006/jabr.2001.9080 Zbl1003.22003
  7. [7] A. Daszkiewicz and T. Przebinda: “The Oscillator Character Formula, for isometry groups of split forms in deep stable range”, Invent. Math., Vol. 123, (1996), pp. 349–376. Zbl0845.22007
  8. [8] D. Ž. Djokovič: Closures of Conjugacy Classes in Classical Real Linear Lie Groups, Lecture Notes in Mathematics, Vol. 848, Springer Verlag, 1980, pp. 63–83. http://dx.doi.org/10.1007/BFb0090557 
  9. [9] Harish-Chandra: “Invariant distributions on Lie algebras”, Amer. J. Math., Vol. 86, (1964), pp. 271–309. http://dx.doi.org/10.2307/2373165 Zbl0131.33302
  10. [10] R. Howe: “θ-series and invariant theory”, Proc. Symp. Pure. Math., Vol. 33, (1979), pp. 275–285. 
  11. [11] R. Howe: A manuscript on dual pairs, preprint. 
  12. [12] G. Kempken: Eine Darstellung des Köchers à k . Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonner Mathematische Schriften, Vol. 137, Bonn, 1981. 
  13. [13] Nishiyama, Kyo, Zhu and Chen-Bo: “Theta lifting of unitary lowest weight modules and their associated cycles”, Duke Math. Jour., Vol. 125(3), (2004), pp. 415–465. http://dx.doi.org/10.1215/S0012-7094-04-12531-X Zbl1078.22010
  14. [14] Nishiyama, Kyo, Zhu and Chen-Bo: “Theta lifting of nilpotent orbits for symmetric pairs”, Trans. Amer. Math. Soc. to appear. Zbl1091.22002
  15. [15] T. Ohta: “The singularities of the closures of nilpotent orbits in certain symmetric pairs”, Tôhoku Math. J., Vol. 38, (1986), pp. 441–468. Zbl0654.22004
  16. [16] T. Ohta: “The closures of nilpotent orbits in the classical symmetric pairs and their singularities”, Tôhoku Math. J., Vol. 43, (1991), pp. 161–211. Zbl0738.22007
  17. [17] T. Przebinda: “Characters, dual pairs, and unitary representations”, Duke Math. J., Vol. 69(3), (1993), pp. 547–592. http://dx.doi.org/10.1215/S0012-7094-93-06923-2 Zbl0788.22018
  18. [18] J. Sekiguchi: “The nilpotent subvariety of the vector space associated to a symmetric pair”, Publ. RIMS, Vol. 20, (1984), pp. 155–212. Zbl0556.14022
  19. [19] J. Sekiguchi: “Remarks on real nilpotent orbits of a symmetric pair”, J. Math. Soc. Japan, Vol. 39, (1987), pp. 127–138. http://dx.doi.org/10.2969/jmsj/03910127 Zbl0627.22008
  20. [20] W. Schmid and K. Vilonen: “Characteristic cycles and wave front cycles of representations of reductive Lie groups”, Ann. of Math. 2 Vol. 151(3), (2000), pp. 1071–1118. http://dx.doi.org/10.2307/121129 Zbl0960.22009
  21. [21] D. Vogan: Representations of reductive Lie groups. A plenary address presented at the International Congress of Mathematicians held in Berkeley, California, August 1986. Introduced by Wilfried Schmid., ICM Series, American Mathematical Society, Providence, RI, 1988. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.