# On the Lie algebra of holomorphic infinitesimal isometries of some classical complex symmetric Banach manifolds

Open Mathematics (2007)

- Volume: 5, Issue: 4, page 696-709
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topJosé Isidro. "On the Lie algebra of holomorphic infinitesimal isometries of some classical complex symmetric Banach manifolds." Open Mathematics 5.4 (2007): 696-709. <http://eudml.org/doc/269372>.

@article{JoséIsidro2007,

abstract = {The Banach-Lie algebras ℌκ of all holomorphic infinitesimal isometries of the classical symmetric complex Banach manifolds of compact type (κ = 1) and non compact type (κ = −1) associated with a complex JB*-triple Z are considered and the Lie ideal structure of ℌκ is studied.},

author = {José Isidro},

journal = {Open Mathematics},

keywords = {Classical symmetric complex Banach manifolds; JB*-triples; Cartan factors; Banach-Lie algebras; Complete holomorphic vector fields; classical symmetric complex Banach manifolds; JB-triples; complete holomorphic vector fields},

language = {eng},

number = {4},

pages = {696-709},

title = {On the Lie algebra of holomorphic infinitesimal isometries of some classical complex symmetric Banach manifolds},

url = {http://eudml.org/doc/269372},

volume = {5},

year = {2007},

}

TY - JOUR

AU - José Isidro

TI - On the Lie algebra of holomorphic infinitesimal isometries of some classical complex symmetric Banach manifolds

JO - Open Mathematics

PY - 2007

VL - 5

IS - 4

SP - 696

EP - 709

AB - The Banach-Lie algebras ℌκ of all holomorphic infinitesimal isometries of the classical symmetric complex Banach manifolds of compact type (κ = 1) and non compact type (κ = −1) associated with a complex JB*-triple Z are considered and the Lie ideal structure of ℌκ is studied.

LA - eng

KW - Classical symmetric complex Banach manifolds; JB*-triples; Cartan factors; Banach-Lie algebras; Complete holomorphic vector fields; classical symmetric complex Banach manifolds; JB-triples; complete holomorphic vector fields

UR - http://eudml.org/doc/269372

ER -

## References

top- [1] T.J. Barton and Y. Friedman: “Bounded derivations of JB*-triples”, Quart. J. Math. Oxford Ser. 2, Vol. 41, (1990), pp. 255–268. http://dx.doi.org/10.1093/qmath/41.3.255 Zbl0728.46046
- [2] D. Beltită and M. Sabac: Lie algebras of bounded operators, Operator Theory: Advances and Applications, Vol. 120, Birkhäuser Verlag, Basel, 2001. Zbl1084.47500
- [3] P. Civin and B. Yood: “Lie and Jordan structures in Banach algebras”, Pacific J. Math., Vol. 15, (1965), pp. 775–797. Zbl0135.35701
- [4] J.B. Conway: A course in operator theory, Graduate Studies in Mathematics, Vol. 21, American Mathematical Society, Providence RI, 2000. Zbl0936.47001
- [5] S. Dineen and R.M. Timoney: “The centroid of a JB*-triple system”, Math. Scand., Vol. 62, (1988), pp. 327–342. Zbl0655.46044
- [6] C.K. Fong, C.R. Miers and A.R. Sourour: “Lie and Jordan ideals of operators on Hilbert space”, Proc. Amer. Math. Soc., Vol. 84, (1982), pp. 516–520. http://dx.doi.org/10.2307/2044026 Zbl0509.47035
- [7] C.K. Fong and G.J. Murphy: “Ideals and Lie ideals of operators”, Acta Sci. Math., Vol. 51, (1987), pp. 441–456. Zbl0659.47040
- [8] L.A. Harris: “Bounded symmetric homogeneous domains in infinite dimensional spaces”, Proceedings on Infinite Dimensional Holomorphy, Internat. Conf., Univ. Kentucky, Lexington, Ky., 1973, pp. 13–40, Lecture Notes in Math., Vol. 364, Springer, Berlin, 1974. http://dx.doi.org/10.1007/BFb0069002
- [9] F.J. Hervés and J.M. Isidro: “Isometries and automorphisms of the spaces of spinors”, Rev. Mat. Univ. Complut. Madrid, Vol. 5, (1992), pp. 193–200. Zbl0816.46045
- [10] T. Ho, J. Martinez-Moreno, A.M. Peralta and B. Russo: “Derivations on real and complex JB*-triples”, J. London. Math. Soc.(2), Vol. 65, (2002), pp. 85–102. http://dx.doi.org/10.1112/S002461070100271X Zbl1015.46041
- [11] J.M. Isidro and W. Kaup: “Weak continuity of holomorphic automorphisms in JB*-triples”, Math. Z., Vol. 210, (1992), pp. 277–288. http://dx.doi.org/10.1007/BF02571798 Zbl0812.46066
- [12] W. Kaup: “On real Cartan factors”, Manuscripta Math., Vol. 92, (1997), pp. 191–222. http://dx.doi.org/10.1007/BF02678189 Zbl0881.17033
- [13] M. Koecher: “Imbedding of Jordan algebras into Lie algebras I”, Amer. J. Math., Vol. 89, (1967), pp. 787–816. http://dx.doi.org/10.2307/2373242 Zbl0209.06801
- [14] M. Koecher: “Imbedding of Jordan algebras into Lie algebras II”, Amer. J. Math., Vol. 90, (1968), pp. 476–510. http://dx.doi.org/10.2307/2373540 Zbl0311.17005
- [15] O. Loos: Bounded symmetric domains and Jordan pairs, University of California at Irvine, Lecture Notes, 1997. Zbl0914.17011
- [16] K. Meyberg: “Jordan-Triplesysteme und die Koecher-Konstruktion von Lie-Algebren”, Math. Z., Vol. 115, (1970), pp. 58–78. http://dx.doi.org/10.1007/BF01109749 Zbl0186.34501
- [17] K. Meyberg: “Zur Konstruktion von Lie-Algebren aus Jordan-Triplesystemen”, Manuscripta Math., Vol. 3, (1970), pp. 115–132. http://dx.doi.org/10.1007/BF01273306 Zbl0211.35701
- [18] C.R. Miers: “Closed Lie ideals in operator algebras”, Canad. J. Math., Vol. 33, (1981), pp. 1271–1278. Zbl0475.46045
- [19] D.M. Topping: “On linear combinations of special operators”, J. Algebra, Vol. 10, (1968), pp. 516–521. http://dx.doi.org/10.1016/0021-8693(68)90077-X
- [20] H. Upmeier: Symmetric Banach manifolds and Jordan C*-algebras, North Holland Mathematics Studies, Vol. 104, North-Holland Publishing Co., Amsterdam, 1985. Zbl0561.46032

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.