Isometries and automorphisms of the spaces of spinors.
Revista Matemática de la Universidad Complutense de Madrid (1992)
- Volume: 5, Issue: 2-3, page 194-200
- ISSN: 1139-1138
Access Full Article
topAbstract
topHow to cite
topHervés, F. J., and Isidro, J. M.. "Isometries and automorphisms of the spaces of spinors.." Revista Matemática de la Universidad Complutense de Madrid 5.2-3 (1992): 194-200. <http://eudml.org/doc/44295>.
@article{Hervés1992,
abstract = {The relationships between the JB*-triple structure of a complex spin factor S and the structure of the Hilbert space H associated to S are discussed. Every surjective linear isometry L of S can be uniquely represented in the form L(x) = mu.U(x) for some conjugation commuting unitary operator U on H and some mu belonging to C, |mu|=1. Automorphisms of S are characterized as those linear maps (continuity not assumed) that preserve minimal tripotents in S and the orthogonality relations among them.},
author = {Hervés, F. J., Isidro, J. M.},
journal = {Revista Matemática de la Universidad Complutense de Madrid},
keywords = {Grupos de isometrías; Grupos de automorfismos; Spinores; Algebras de Jordan; automorphisms; -triple structure; complex spin factor; conjugation commuting unitary operator},
language = {eng},
number = {2-3},
pages = {194-200},
title = {Isometries and automorphisms of the spaces of spinors.},
url = {http://eudml.org/doc/44295},
volume = {5},
year = {1992},
}
TY - JOUR
AU - Hervés, F. J.
AU - Isidro, J. M.
TI - Isometries and automorphisms of the spaces of spinors.
JO - Revista Matemática de la Universidad Complutense de Madrid
PY - 1992
VL - 5
IS - 2-3
SP - 194
EP - 200
AB - The relationships between the JB*-triple structure of a complex spin factor S and the structure of the Hilbert space H associated to S are discussed. Every surjective linear isometry L of S can be uniquely represented in the form L(x) = mu.U(x) for some conjugation commuting unitary operator U on H and some mu belonging to C, |mu|=1. Automorphisms of S are characterized as those linear maps (continuity not assumed) that preserve minimal tripotents in S and the orthogonality relations among them.
LA - eng
KW - Grupos de isometrías; Grupos de automorfismos; Spinores; Algebras de Jordan; automorphisms; -triple structure; complex spin factor; conjugation commuting unitary operator
UR - http://eudml.org/doc/44295
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.