# Isometries and automorphisms of the spaces of spinors.

Revista Matemática de la Universidad Complutense de Madrid (1992)

- Volume: 5, Issue: 2-3, page 194-200
- ISSN: 1139-1138

## Access Full Article

top## Abstract

top## How to cite

topHervés, F. J., and Isidro, J. M.. "Isometries and automorphisms of the spaces of spinors.." Revista Matemática de la Universidad Complutense de Madrid 5.2-3 (1992): 194-200. <http://eudml.org/doc/44295>.

@article{Hervés1992,

abstract = {The relationships between the JB*-triple structure of a complex spin factor S and the structure of the Hilbert space H associated to S are discussed. Every surjective linear isometry L of S can be uniquely represented in the form L(x) = mu.U(x) for some conjugation commuting unitary operator U on H and some mu belonging to C, |mu|=1. Automorphisms of S are characterized as those linear maps (continuity not assumed) that preserve minimal tripotents in S and the orthogonality relations among them.},

author = {Hervés, F. J., Isidro, J. M.},

journal = {Revista Matemática de la Universidad Complutense de Madrid},

keywords = {Grupos de isometrías; Grupos de automorfismos; Spinores; Algebras de Jordan; automorphisms; -triple structure; complex spin factor; conjugation commuting unitary operator},

language = {eng},

number = {2-3},

pages = {194-200},

title = {Isometries and automorphisms of the spaces of spinors.},

url = {http://eudml.org/doc/44295},

volume = {5},

year = {1992},

}

TY - JOUR

AU - Hervés, F. J.

AU - Isidro, J. M.

TI - Isometries and automorphisms of the spaces of spinors.

JO - Revista Matemática de la Universidad Complutense de Madrid

PY - 1992

VL - 5

IS - 2-3

SP - 194

EP - 200

AB - The relationships between the JB*-triple structure of a complex spin factor S and the structure of the Hilbert space H associated to S are discussed. Every surjective linear isometry L of S can be uniquely represented in the form L(x) = mu.U(x) for some conjugation commuting unitary operator U on H and some mu belonging to C, |mu|=1. Automorphisms of S are characterized as those linear maps (continuity not assumed) that preserve minimal tripotents in S and the orthogonality relations among them.

LA - eng

KW - Grupos de isometrías; Grupos de automorfismos; Spinores; Algebras de Jordan; automorphisms; -triple structure; complex spin factor; conjugation commuting unitary operator

UR - http://eudml.org/doc/44295

ER -

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.