# Fragmented deformations of primitive multiple curves

Open Mathematics (2013)

- Volume: 11, Issue: 12, page 2106-2137
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topJean-Marc Drézet. "Fragmented deformations of primitive multiple curves." Open Mathematics 11.12 (2013): 2106-2137. <http://eudml.org/doc/269395>.

@article{Jean2013,

abstract = {A primitive multiple curve is a Cohen-Macaulay irreducible projective curve Y that can be locally embedded in a smooth surface, and such that Y red is smooth. We study the deformations of Y to curves with smooth irreducible components, when the number of components is maximal (it is then the multiplicity n of Y). We are particularly interested in deformations to n disjoint smooth irreducible components, which are called fragmented deformations. We describe them completely. We give also a characterization of primitive multiple curves having a fragmented deformation.},

author = {Jean-Marc Drézet},

journal = {Open Mathematics},

keywords = {Multiple curves; Deformations; multiple curves; deformations; ribbons},

language = {eng},

number = {12},

pages = {2106-2137},

title = {Fragmented deformations of primitive multiple curves},

url = {http://eudml.org/doc/269395},

volume = {11},

year = {2013},

}

TY - JOUR

AU - Jean-Marc Drézet

TI - Fragmented deformations of primitive multiple curves

JO - Open Mathematics

PY - 2013

VL - 11

IS - 12

SP - 2106

EP - 2137

AB - A primitive multiple curve is a Cohen-Macaulay irreducible projective curve Y that can be locally embedded in a smooth surface, and such that Y red is smooth. We study the deformations of Y to curves with smooth irreducible components, when the number of components is maximal (it is then the multiplicity n of Y). We are particularly interested in deformations to n disjoint smooth irreducible components, which are called fragmented deformations. We describe them completely. We give also a characterization of primitive multiple curves having a fragmented deformation.

LA - eng

KW - Multiple curves; Deformations; multiple curves; deformations; ribbons

UR - http://eudml.org/doc/269395

ER -

## References

top- [1] Bănică C., Forster O., Multiplicity structures on space curves, In: The Lefschetz Centennial Conference, I, Mexico City, December 10–14, 1984, Contemp. Math., 58, American Mathematical Society, Providence, 1986, 47–64
- [2] Bayer D., Eisenbud D., Ribbons and their canonical embeddings, Trans. Amer. Math. Soc., 1995, 347(3), 719–756 http://dx.doi.org/10.1090/S0002-9947-1995-1273472-3 Zbl0853.14016
- [3] Drézet J.-M., Déformations des extensions larges de faisceaux, Pacific J. Math., 2005, 220(2), 201–297 http://dx.doi.org/10.2140/pjm.2005.220.201
- [4] Drézet J.-M., Faisceaux cohérents sur les courbes multiples, Collect. Math., 2006, 57(2), 121–171
- [5] Drézet J.-M., Paramétrisation des courbes multiples primitives, Adv. Geom., 2007, 7(4), 559–612 http://dx.doi.org/10.1515/ADVGEOM.2007.034
- [6] Drézet J.-M., Faisceaux sans torsion et faisceaux quasi localement libres sur les courbes multiples primitives, Math. Nachr., 2009, 282(7), 919–952 http://dx.doi.org/10.1002/mana.200810781
- [7] Drézet J.-M., Sur les conditions d’existence des faisceaux semi-stables sur les courbes multiples primitives, Pacific J. Math., 2011, 249(2), 291–319 http://dx.doi.org/10.2140/pjm.2011.249.291
- [8] Drézet J.-M., Courbes multiples primitives et déformations de courbes lisses, Ann. Fac. Sci. Toulouse Math., 2013, 22(1), 133–154 http://dx.doi.org/10.5802/afst.1368
- [9] Eisenbud D., Commutative Algebra, Grad. Texts in Math., 150, Springer, Berlin-Heidelberg-New York, 1995 http://dx.doi.org/10.1007/978-1-4612-5350-1
- [10] Eisenbud D., Green M., Clifford indices of ribbons, Trans. Amer. Math. Soc., 1995, 347(3), 757–765 http://dx.doi.org/10.1090/S0002-9947-1995-1273474-7 Zbl0854.14016
- [11] González M., Smoothing of ribbons over curves, J. Reine Angew. Math., 2006, 591, 201–235 Zbl1094.14016
- [12] Hartshorne R., Algebraic Geometry, Grad. Texts in Math., 52, Springer, Berlin-Heidelberg-New York, 1977 http://dx.doi.org/10.1007/978-1-4757-3849-0
- [13] Inaba M.-A., On the moduli of stable sheaves on a reducible projective scheme and examples on a reducible quadric surface, Nagoya Math. J., 2002, 166, 135–181 Zbl1056.14014
- [14] Simpson C.T., Moduli of representations of the fundamental group of a smooth projective variety I, Inst. Hautes Études Sci. Publ. Math., 1994, 79, 47–129 http://dx.doi.org/10.1007/BF02698887
- [15] Teixidor i Bigas M., Moduli spaces of (semi)stable vector bundles on tree-like curves, Math. Ann., 1991, 290(2), 341–348 http://dx.doi.org/10.1007/BF01459249 Zbl0719.14015
- [16] Teixidor i Bigas M., Moduli spaces of vector bundles on reducible curves, Amer. J. Math., 1995, 117(1), 125–139 http://dx.doi.org/10.2307/2375038 Zbl0836.14012
- [17] Teixidor i Bigas M., Compactifications of moduli spaces of (semi)stable bundles on singular curves: two points of view, Collect. Math., 1998, 49(2–3), 527–548 Zbl0932.14015
- [18] Zariski O., Samuel P., Commutative Algebra, I, II, Grad. Texts in Math., 28, 29, Springer, Berlin-Heidelberg-New York, 1975

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.