Topological tools for the prescribed scalar curvature problem on S n

Dina Abuzaid; Randa Ben Mahmoud; Hichem Chtioui; Afef Rigane

Open Mathematics (2014)

  • Volume: 12, Issue: 12, page 1829-1839
  • ISSN: 2391-5455

Abstract

top
In this paper, we consider the problem of the existence of conformal metrics with prescribed scalar curvature on the standard sphere S n, n ≥ 3. We give new existence and multiplicity results based on a new Euler-Hopf formula type. Our argument also has the advantage of extending well known results due to Y. Li [16].

How to cite

top

Dina Abuzaid, et al. "Topological tools for the prescribed scalar curvature problem on S n." Open Mathematics 12.12 (2014): 1829-1839. <http://eudml.org/doc/269413>.

@article{DinaAbuzaid2014,
abstract = {In this paper, we consider the problem of the existence of conformal metrics with prescribed scalar curvature on the standard sphere S n, n ≥ 3. We give new existence and multiplicity results based on a new Euler-Hopf formula type. Our argument also has the advantage of extending well known results due to Y. Li [16].},
author = {Dina Abuzaid, Randa Ben Mahmoud, Hichem Chtioui, Afef Rigane},
journal = {Open Mathematics},
keywords = {Scalar curvature; Variational method; β-flatness condition; Loss of compactness; Critical points at infinity; Topological method; scalar curvature; variational method; -flatness condition; loss of compactness; critical points at infinity; topological method},
language = {eng},
number = {12},
pages = {1829-1839},
title = {Topological tools for the prescribed scalar curvature problem on S n},
url = {http://eudml.org/doc/269413},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Dina Abuzaid
AU - Randa Ben Mahmoud
AU - Hichem Chtioui
AU - Afef Rigane
TI - Topological tools for the prescribed scalar curvature problem on S n
JO - Open Mathematics
PY - 2014
VL - 12
IS - 12
SP - 1829
EP - 1839
AB - In this paper, we consider the problem of the existence of conformal metrics with prescribed scalar curvature on the standard sphere S n, n ≥ 3. We give new existence and multiplicity results based on a new Euler-Hopf formula type. Our argument also has the advantage of extending well known results due to Y. Li [16].
LA - eng
KW - Scalar curvature; Variational method; β-flatness condition; Loss of compactness; Critical points at infinity; Topological method; scalar curvature; variational method; -flatness condition; loss of compactness; critical points at infinity; topological method
UR - http://eudml.org/doc/269413
ER -

References

top
  1. [1] A. Ambrosetti, M. Badiale, Homoclinics: Poincaré-Melinkov type results via varitional approch, Ann.Inst.H.Poincaré Anal. Nonlinéaire 15 (1998) 233–252. http://dx.doi.org/10.1016/S0294-1449(97)89300-6 Zbl1004.37043
  2. [2] Ambrosetti A., Garcia Azorero J., Peral A., Perturbation of - Δ u + u ( N + 2 ) ( N - 2 ) = 0 , the Scalar Curvature Problem in ℝ Nand related topics, Journal of Functional Analysis, 165 (1999), 117–149. http://dx.doi.org/10.1006/jfan.1999.3390 
  3. [3] A. Bahri, Critical point at infinity in some variational problems, Pitman Res. Notes Math, Ser 182, Longman Sci. Tech. Harlow 1989. Zbl0676.58021
  4. [4] A. Bahri, An invariant for yamabe-type flows with applications to scalar curvature problems in high dimensions, A celebration of J. F. Nash Jr., Duke Math. J. 81 (1996), 323–466. http://dx.doi.org/10.1215/S0012-7094-96-08116-8 
  5. [5] A. Bahri and P. Rabinowitz, Periodic orbits of hamiltonian systems of three body type, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 561–649. Zbl0745.34034
  6. [6] M. Ben Ayed, Y. Chen, H. Chtioui and M. Hammami, On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J. 84 (1996), 633–677. http://dx.doi.org/10.1215/S0012-7094-96-08420-3 Zbl0862.53034
  7. [7] R. Ben Mahmoud, H. Chtioui, Existence results for the prescribed Scalar curvature on S3, Annales de l’Institut Fourier, 61 (2011), 971–986. http://dx.doi.org/10.5802/aif.2634 Zbl1235.35118
  8. [8] R. Ben Mahmoud, H. Chtioui, Prescribing the Scalar Curvature Problem on Higher-Dimensional Manifolds, Discrete and Continuous Dynamical Systems A, 32 (2012), 1857–1879. http://dx.doi.org/10.3934/dcds.2012.32.1857 Zbl1242.58006
  9. [9] R. Ben Mahmoud, H. Chtioui, A. Rigane On the prescribed scalar curvature problem on Sn: the degree zero case, C. R. Acad. Sci. Paris, Ser. I, 350, (2012), 583–586. http://dx.doi.org/10.1016/j.crma.2012.06.012 Zbl1247.53032
  10. [10] A. Chang and P. Yang, A perturbation result in prescribing scalar curvature on S n, Duke Math. J. 64 (1991), 27–69. http://dx.doi.org/10.1215/S0012-7094-91-06402-1 Zbl0739.53027
  11. [11] H. Chtioui, Prescribing the Scalar Curvature Problem on Three and Four Manifolds, Advanced Nonlinear Studies, 3 (2003), 457–470. Zbl1051.53031
  12. [12] H. Chtioui, R. Ben Mahmoud, D. A. Abuzaid, Conformal transformation of metrics on the n-sphere, Nonlinear Analysis: TMA, Volume 82 (2013) pp 66–81. Zbl1263.53028
  13. [13] H. Chtioui and A. Rigane, On the prescribed Q-curvature problem on Sn, C. R. Acad. Sci. Paris, Ser. I 348 (2010), 635–638. http://dx.doi.org/10.1016/j.crma.2010.03.018 Zbl1193.53101
  14. [14] H. Chtioui and A. Rigane, On the prescribed Q-curvature problem on S n, Journal of Functional Analysis, 261 (2011), 2999–3043. http://dx.doi.org/10.1016/j.jfa.2011.07.017 Zbl1233.53007
  15. [15] J. Kazdan and J. Warner, „Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatur”, Annals of Math.101(1975), p.317–331. http://dx.doi.org/10.2307/1970993 Zbl0297.53020
  16. [16] Y.Y. Li, Prescribing scalar curvature on Sn and related topics, Part I, Journal of Differential Equations, 120 (1995), 319–410. http://dx.doi.org/10.1006/jdeq.1995.1115 
  17. [17] Y.Y. Li, Prescribing scalar curvature on Sn and related topics, Part II: existence and compactness, Comm. Pure Appl. Math. 49 (1996), 541–579. http://dx.doi.org/10.1002/(SICI)1097-0312(199606)49:6<541::AID-CPA1>3.0.CO;2-A 
  18. [18] R. Schoen and Z. Zhang, Prescribed scalar curvature on the n-Sphere, Calc. Var. P.D.E. 4 (1996), 1–25. http://dx.doi.org/10.1007/BF01322307 Zbl0843.53037
  19. [19] M. Stuwe, A global compactness result for elliptic boundary value problem involving limiting nonlinearities, Math. Z. 187, (1984), 511–517. http://dx.doi.org/10.1007/BF01174186 Zbl0535.35025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.