Existence results for the prescribed Scalar curvature on
Randa Ben Mahmoud[1]; Hichem Chtioui
- [1] Faculté des Sciences de Sfax Département de Mathématiques Route Soukra 3018 Sfax (Tunisie)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 3, page 971-986
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMahmoud, Randa Ben, and Chtioui, Hichem. "Existence results for the prescribed Scalar curvature on $S^{3}$." Annales de l’institut Fourier 61.3 (2011): 971-986. <http://eudml.org/doc/219831>.
@article{Mahmoud2011,
abstract = {This paper is devoted to the existence of conformal metrics on $S^\{3\}$ with prescribed scalar curvature. We extend well known existence criteria due to Bahri-Coron.},
affiliation = {Faculté des Sciences de Sfax Département de Mathématiques Route Soukra 3018 Sfax (Tunisie)},
author = {Mahmoud, Randa Ben, Chtioui, Hichem},
journal = {Annales de l’institut Fourier},
keywords = {Scalar curvature; critical points at infinity; topological method; scalar curvature},
language = {eng},
number = {3},
pages = {971-986},
publisher = {Association des Annales de l’institut Fourier},
title = {Existence results for the prescribed Scalar curvature on $S^\{3\}$},
url = {http://eudml.org/doc/219831},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Mahmoud, Randa Ben
AU - Chtioui, Hichem
TI - Existence results for the prescribed Scalar curvature on $S^{3}$
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 3
SP - 971
EP - 986
AB - This paper is devoted to the existence of conformal metrics on $S^{3}$ with prescribed scalar curvature. We extend well known existence criteria due to Bahri-Coron.
LA - eng
KW - Scalar curvature; critical points at infinity; topological method; scalar curvature
UR - http://eudml.org/doc/219831
ER -
References
top- T. Aubin, Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures et Appl. 55 (1976), 269-296 Zbl0336.53033MR431287
- T. Aubin, A. Bahri, Une hypothèse topologique pour le problème de la courbure scalaire prescrite. (French) [A topological hypothesis for the problem of prescribed scalar curvature], J. Math. Pures Appl. 76 (1997), 843-850 Zbl0916.58041MR1489940
- A. Bahri, Critical point at infinity in some variational problems, 182 (1989), Longman Sci. Tech., Harlow Zbl0676.58021MR1019828
- A. Bahri, An invariant for yamabe-type flows with applications to scalar curvature problems in high dimensions, A celebration of J. F. Nash Jr., Duke Math. J. 81 (1996), 323-466 Zbl0856.53028MR1395407
- A. Bahri, J. M. Coron, The scalar curvature problem on the standard three dimensional spheres, J. Funct. Anal. 95 (1991), 106-172 Zbl0722.53032MR1087949
- A. Bahri, P. Rabinowitz, Periodic orbits of hamiltonian systems of three body type, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 561-649 Zbl0745.34034MR1145561
- M. Ben Ayed, Y. Chen, H. Chtioui, M. Hammami, On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J. 84 (1996), 633-677 Zbl0862.53034MR1408540
- S. A. Chang, M. J. Gursky, P. C. Yang, The scalar curvature equation on 2 and 3 spheres, Calc. Var. 1 (1993), 205-229 Zbl0822.35043MR1261723
- S. Y. Chang, P. Yang, A perturbation result in prescribing scalar curvature on , Duke Math. J. 64 (1991), 27-69 Zbl0739.53027MR1131392
- C. C. Chen, C. S. Lin, Prescribing scalar curvature on , Part I: Apriori estimates, J. differential geometry 57 (2001), 67-171 Zbl1043.53028MR1871492
- H. Chtioui, Prescribing the Scalar Curvature Problem on Three and Four Manifolds, Advanced Nonlinear Studies 3 (2003), 457-470 Zbl1051.53031MR2017242
- C. C. Conley, Isolated invariant sets and the Morse index, 38 (1978), AMS Zbl0397.34056MR511133
- J. Escobar, R. Schoen, Conformal metrics with prescribed scalar curvature, Inventiones Math. 86 (1986), 243-254 Zbl0628.53041MR856845
- A. Floer, Cuplength Estimates on Lagrangian intersections, Comm. Pure and Applied Math XLII (1989), 335-356 Zbl0683.58017MR990135
- J. Kazdan, J. Warner, Existence and conformal deformations of metrics with prescribed Gaussian and scalar curvature, Annals of Math. 101 (1975), 317-331 Zbl0297.53020MR375153
- Y. Y. Li, Prescribing scalar curvature on , and related problems, J. Functional Analysis 118 (1993), 43-118 Zbl0790.53040MR1245597
- Y. Y. Li, Prescribing scalar curvature on and related topics, Part I, Journal of Differential Equations 120 (1995), 319-410 Zbl0827.53039MR1347349
- Y. Y. Li, Prescribing scalar curvature on and related topics, Part II: existence and compactness, Comm. Pure Appl. Math. 49 (1996), 541-579 Zbl0849.53031MR1383201
- C. S. Lin, On Liouville theorem and apriori estimates for the scalar curvature equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci 4 (1998), 107-130 Zbl0974.53032MR1658881
- P. L. Lions, The concentration compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana 1 (1985), I: 165-201, II: 45–121 Zbl0704.49006MR850686
- J. Milnor, Lectures on the h-cobordism theorem, (1965), Princeton University Press Zbl0161.20302MR190942
- R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), 479-495 Zbl0576.53028MR788292
- R. Schoen, D. Zhang, Prescribed scalar curvature on the n-sphere, Calculus of Variations and Partial Differential Equations 4 (1996), 1-25 Zbl0843.53037MR1379191
- M. Struwe, A global compactness result for elliptic boundary value problem involving limiting nonlinearities, Math. Z. 187 (1984), 511-517 Zbl0535.35025MR760051
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.