Discrete maximum principle for interior penalty discontinuous Galerkin methods
Tamás Horváth; Miklós Mincsovics
Open Mathematics (2013)
- Volume: 11, Issue: 4, page 664-679
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topTamás Horváth, and Miklós Mincsovics. "Discrete maximum principle for interior penalty discontinuous Galerkin methods." Open Mathematics 11.4 (2013): 664-679. <http://eudml.org/doc/269421>.
@article{TamásHorváth2013,
abstract = {A class of linear elliptic operators has an important qualitative property, the so-called maximum principle. In this paper we investigate how this property can be preserved on the discrete level when an interior penalty discontinuous Galerkin method is applied for the discretization of a 1D elliptic operator. We give mesh conditions for the symmetric and for the incomplete method that establish some connection between the mesh size and the penalty parameter. We then investigate the sharpness of these conditions. The theoretical results are illustrated with numerical examples.},
author = {Tamás Horváth, Miklós Mincsovics},
journal = {Open Mathematics},
keywords = {Discrete maximum principle; Discontinuous Galerkin; Interior penalty; comparison principle; conservation of nonnegativity; -matrix; finite element; one-dimensional reaction-diffusion operator; interior penalty discontinuous Galerkin method; numerical example},
language = {eng},
number = {4},
pages = {664-679},
title = {Discrete maximum principle for interior penalty discontinuous Galerkin methods},
url = {http://eudml.org/doc/269421},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Tamás Horváth
AU - Miklós Mincsovics
TI - Discrete maximum principle for interior penalty discontinuous Galerkin methods
JO - Open Mathematics
PY - 2013
VL - 11
IS - 4
SP - 664
EP - 679
AB - A class of linear elliptic operators has an important qualitative property, the so-called maximum principle. In this paper we investigate how this property can be preserved on the discrete level when an interior penalty discontinuous Galerkin method is applied for the discretization of a 1D elliptic operator. We give mesh conditions for the symmetric and for the incomplete method that establish some connection between the mesh size and the penalty parameter. We then investigate the sharpness of these conditions. The theoretical results are illustrated with numerical examples.
LA - eng
KW - Discrete maximum principle; Discontinuous Galerkin; Interior penalty; comparison principle; conservation of nonnegativity; -matrix; finite element; one-dimensional reaction-diffusion operator; interior penalty discontinuous Galerkin method; numerical example
UR - http://eudml.org/doc/269421
ER -
References
top- [1] Ainsworth M., Rankin R., Technical Note: A note on the selection of the penalty parameter for discontinuous Galerkin finite element schemes, Numer. Methods Partial Differential Equations, 2012, 28(3), 1099–1104 http://dx.doi.org/10.1002/num.20663
- [2] Arnold D.N., Brezzi F., Cockburn B., Marini L.D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 2001/02, 39(5), 1749–1779 http://dx.doi.org/10.1137/S0036142901384162 Zbl1008.65080
- [3] Berman A., Plemmons R.J., Nonnegative Matrices in the Mathematical Sciences, Comput. Sci. Appl. Math., Academic Press, New York-London, 1979
- [4] Ciarlet P.G., Discrete maximum principle for finite-difference operators, Aequationes Math., 1970, 4(3), 338–352 http://dx.doi.org/10.1007/BF01844166 Zbl0198.14601
- [5] Ciarlet P.G., Raviart P.-A., Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., 1973, 2, 17–31 http://dx.doi.org/10.1016/0045-7825(73)90019-4 Zbl0251.65069
- [6] Di Pietro D.A., Ern A., Mathematical Aspects of Discontinuous Galerkin Methods, Math. Appl. (Berlin), 69, Springer, Heidelberg, 2012
- [7] Ern A., Guermond J.-L., Theory and Practice of Finite Elements, Appl. Math. Sci., 159, Springer, New York, 2004 Zbl1059.65103
- [8] Evans L.C., Partial Differential Equations, Grad. Stud. Math., 19, American Mathematical Society, Providence, 1997
- [9] Faragó I., Horváth R., A review of reliable numerical models for three-dimensional linear parabolic problems, Internat. J. Numer. Methods Engrg., 2007, 70(1), 25–45 http://dx.doi.org/10.1002/nme.1863 Zbl1194.80119
- [10] Hannukainen A., Korotov S., Vejchodský T., On weakening conditions for discrete maximum principles for linear finite element schemes, In: Numerical Analysis and its Applications, Lozenetz, June 16–20, 2008, Lecture Notes in Comput. Sci., 5434, Springer, Berlin-Heidelberg, 2009, 297–304 http://dx.doi.org/10.1007/978-3-642-00464-3_32
- [11] Houston P., Süli E., Wihler T.P., A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs, IMA J. Numer. Anal., 2008, 28(2), 245–273 http://dx.doi.org/10.1093/imanum/drm009 Zbl1144.65070
- [12] Höhn W., Mittelmann H.-D., Some remarks on the discrete maximum-principle for finite elements of higher order, Computing, 1981, 27(2), 145–154 http://dx.doi.org/10.1007/BF02243548
- [13] Mincsovics M.E., Horváth T.L., On the differences of the discrete weak and strong maximum principles for elliptic operators, In: Large-Scale Scientific Computing, Sozopol, June 6–10, 2011, Lecture Notes in Comput. Sci., 7116, Springer, Berlin-Heidelberg, 2012, 614–621 http://dx.doi.org/10.1007/978-3-642-29843-1_70
- [14] Rivière B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Frontiers Appl. Math., 35, Society for Industrial and Applied Mathematics, Philadelphia, 2008 Zbl1153.65112
- [15] Ruas Santos V., On the strong maximum principle for some piecewise linear finite element approximate problems of nonpositive type, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 1982, 29(2), 473–491 Zbl0488.65052
- [16] Vejchodský T., Discrete Maximum Principles, habilitation thesis, Institute of Mathematics of the Academy of Sciences and Faculty of Mathematics and Physics, Charles University, Prague, 2011
- [17] Vejchodský T., Šolín P., Discrete maximum principle for higher-order finite elements in 1D, Math. Comp., 2007, 76(260), 1833–1846 http://dx.doi.org/10.1090/S0025-5718-07-02022-4 Zbl1125.65108
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.