On some properties of Hamel bases and their applications to Marczewski measurable functions

François Dorais; Rafał Filipów; Tomasz Natkaniec

Open Mathematics (2013)

  • Volume: 11, Issue: 3, page 487-508
  • ISSN: 2391-5455

Abstract

top
We introduce new properties of Hamel bases. We show that it is consistent with ZFC that such Hamel bases exist. Under the assumption that there exists a Hamel basis with one of these properties we construct a discontinuous and additive function that is Marczewski measurable. Moreover, we show that such a function can additionally have the intermediate value property (and even be an extendable function). Finally, we examine sums and limits of such functions.

How to cite

top

François Dorais, Rafał Filipów, and Tomasz Natkaniec. "On some properties of Hamel bases and their applications to Marczewski measurable functions." Open Mathematics 11.3 (2013): 487-508. <http://eudml.org/doc/269437>.

@article{FrançoisDorais2013,
abstract = {We introduce new properties of Hamel bases. We show that it is consistent with ZFC that such Hamel bases exist. Under the assumption that there exists a Hamel basis with one of these properties we construct a discontinuous and additive function that is Marczewski measurable. Moreover, we show that such a function can additionally have the intermediate value property (and even be an extendable function). Finally, we examine sums and limits of such functions.},
author = {François Dorais, Rafał Filipów, Tomasz Natkaniec},
journal = {Open Mathematics},
keywords = {Linear function; Additive function; (s)-measurable set; Marczewski measurable set; (s)-measurable function; Marczewski measurable function; The intermediate value property; Darboux function; Connectivity function; Extendable function; Covering Property Axiom; -measurable set; -measurable function; connectivity function; extendable function; covering property axiom},
language = {eng},
number = {3},
pages = {487-508},
title = {On some properties of Hamel bases and their applications to Marczewski measurable functions},
url = {http://eudml.org/doc/269437},
volume = {11},
year = {2013},
}

TY - JOUR
AU - François Dorais
AU - Rafał Filipów
AU - Tomasz Natkaniec
TI - On some properties of Hamel bases and their applications to Marczewski measurable functions
JO - Open Mathematics
PY - 2013
VL - 11
IS - 3
SP - 487
EP - 508
AB - We introduce new properties of Hamel bases. We show that it is consistent with ZFC that such Hamel bases exist. Under the assumption that there exists a Hamel basis with one of these properties we construct a discontinuous and additive function that is Marczewski measurable. Moreover, we show that such a function can additionally have the intermediate value property (and even be an extendable function). Finally, we examine sums and limits of such functions.
LA - eng
KW - Linear function; Additive function; (s)-measurable set; Marczewski measurable set; (s)-measurable function; Marczewski measurable function; The intermediate value property; Darboux function; Connectivity function; Extendable function; Covering Property Axiom; -measurable set; -measurable function; connectivity function; extendable function; covering property axiom
UR - http://eudml.org/doc/269437
ER -

References

top
  1. [1] Bartoszyński T., Judah H., Set Theory, A K Peters, Wellesley, 1995 
  2. [2] Brown J.B., Negligible sets for real connectivity functions, Proc. Amer. Math. Soc., 1970, 24(2), 263–269 http://dx.doi.org/10.1090/S0002-9939-1970-0249545-9[Crossref] Zbl0189.53703
  3. [3] Cichoń J., Jasiński A., A note on algebraic sums of subsets of the real line, Real Anal. Exchange, 2002/03, 28(2), 493–499 Zbl1052.28001
  4. [4] Cichoń J., Kharazishvili A., Węglorz B., Subsets of the Real Line, Wydawnictwo Uniwersytetu Łódzkiego, Łódź, 1995 
  5. [5] Cichoń J., Szczepaniak P., Hamel-isomorphic images of the unit ball, MLQ Math. Log. Q., 2010, 56(6), 625–630 http://dx.doi.org/10.1002/malq.200910113[Crossref] Zbl1221.28001
  6. [6] Ciesielski K., Jastrzębski J., Darboux-like functions within the classes of Baire one, Baire two, and additive functions, Topology Appl., 2000, 103(2), 203–219 http://dx.doi.org/10.1016/S0166-8641(98)00169-2[Crossref] Zbl0951.26003
  7. [7] Ciesielski K., Pawlikowski J., The Covering Property Axiom, CPA, Cambridge Tracts in Math., 164, Cambridge University Press, Cambridge, 2004 http://dx.doi.org/10.1017/CBO9780511546457[Crossref] Zbl1066.03047
  8. [8] Ciesielski K., Pawlikowski J., Nice Hamel bases under the covering property axiom, Acta Math. Hungar., 2004, 105(3), 197–213 http://dx.doi.org/10.1023/B:AMHU.0000049287.44877.2c[Crossref] Zbl1083.26001
  9. [9] Ciesielski K., Recław I., Cardinal invariants concerning extendable and peripherally continuous functions, Real Anal. Exchange, 1995/96, 21(2), 459–472 Zbl0879.26005
  10. [10] Császár Á., Laczkovich M., Discrete and equal convergence, Studia Sci. Math. Hungar., 1975, 10(3–4), 463–472 Zbl0405.26006
  11. [11] Erdős P., Stone A.H., On the sum of two Borel sets, Proc. Amer. Math. Soc., 1970, 25(2), 304–306 [Crossref] Zbl0192.40304
  12. [12] Filipów R., Recław I., On the difference property of Borel measurable and (s)-measurable functions, Acta Math. Hungar., 2002, 96(1–2), 21–25 http://dx.doi.org/10.1023/A:1015661511337[Crossref] Zbl1006.28006
  13. [13] Gibson R.G., Natkaniec T., Darboux like functions, Real Anal. Exchange, 1996/97, 22(2), 492–533 Zbl0942.26004
  14. [14] Gibson R.G., Natkaniec T., Darboux-like functions. Old problems and new results, Real Anal. Exchange, 1998/99, 24(2), 487–496 Zbl0969.26003
  15. [15] Gibson R.G., Roush F., The restrictions of a connectivity function are nice but not that nice, Real Anal. Exchange, 1986/87, 12(1), 372–376 
  16. [16] Kechris A.S., Classical Descriptive Set Theory, Grad. Texts in Math., 156, Springer, New York, 1995 http://dx.doi.org/10.1007/978-1-4612-4190-4[Crossref] 
  17. [17] Kuczma M., An Introduction to the Theory of Functional Equations and Inequalities, 2nd ed., Birkhäuser, Basel, 2009 http://dx.doi.org/10.1007/978-3-7643-8749-5[Crossref] 
  18. [18] Kysiak M., Nonmeasurable algebraic sums of sets of reals, Colloq. Math., 2005, 102(1), 113–122 http://dx.doi.org/10.4064/cm102-1-10[Crossref] Zbl1072.28002
  19. [19] Miller A.W., Popvassilev S.G., Vitali sets and Hamel bases that are Marczewski measurable, Fund. Math., 2000, 166(3), 269–279 Zbl0968.03051
  20. [20] Mycielski J., Independent sets in topological algebras, Fund. Math., 1964, 55, 139–147 Zbl0124.01301
  21. [21] Natkaniec T., On extendable derivations, Real Anal. Exchange, 2008/09, 34(1), 207–213 
  22. [22] Natkaniec T., Covering an additive function by < c-many continuous functions, J. Math. Anal. Appl., 2012, 387(2), 741–745 http://dx.doi.org/10.1016/j.jmaa.2011.09.035[Crossref] 
  23. [23] Natkaniec T., Recław I., Universal summands for families of measurable functions, Acta Sci. Math. (Szeged), 1998, 64(3–4), 463–471 Zbl0913.04003
  24. [24] Natkaniec T., Wilczyński W., Sums of periodic Darboux functions and measurability, Atti Sem. Mat. Fis. Univ. Modena, 2003, 51(2), 369–376 Zbl1221.26004
  25. [25] Rogers C.A., A linear Borel set whose difference set is not a Borel set, Bull. London Math. Soc., 1970, 2(1), 41–42 http://dx.doi.org/10.1112/blms/2.1.41[Crossref] Zbl0193.30902
  26. [26] Sierpiński W., Sur la question de la mesurabilité de la base de M. Hamel, Fund. Math., 1920, 1, 105–111 Zbl47.0180.03
  27. [27] Sierpiński W., Sur les suites transfinies convergentes de fonctions de Baire, Fund. Math., 1920, 1, 132–141 Zbl47.0237.01
  28. [28] Szpilrajn E., Sur une classe de fonctions de M. Sierpiński et la classe correspondante d’ensembles, Fund. Math., 1935, 24, 17–34 Zbl0010.19901
  29. [29] Taylor A.D., Partitions of pairs of reals, Fund. Math., 1978, 99(1), 51–59 Zbl0377.04010
  30. [30] Walsh J.T., Marczewski sets, measure and the Baire property, Fund. Math., 1988, 129(2), 83–89 Zbl0652.28001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.