Real-linear isometries between function algebras

Takeshi Miura

Open Mathematics (2011)

  • Volume: 9, Issue: 4, page 778-788
  • ISSN: 2391-5455

Abstract

top
Let A and B be uniformly closed function algebras on locally compact Hausdorff spaces with Choquet boundaries Ch A and ChB, respectively. We prove that if T: A → B is a surjective real-linear isometry, then there exist a continuous function κ: ChB → z ∈ ℂ: |z| = 1, a (possibly empty) closed and open subset K of ChB and a homeomorphism φ: ChB → ChA such that T(f) = κ(f ∘φ) on K and T f = κ f o φ ¯ on ChB K for all f ∈ A. Such a representation holds for surjective real-linear isometries between (not necessarily uniformly closed) function algebras.

How to cite

top

Takeshi Miura. "Real-linear isometries between function algebras." Open Mathematics 9.4 (2011): 778-788. <http://eudml.org/doc/269446>.

@article{TakeshiMiura2011,
abstract = {Let A and B be uniformly closed function algebras on locally compact Hausdorff spaces with Choquet boundaries Ch A and ChB, respectively. We prove that if T: A → B is a surjective real-linear isometry, then there exist a continuous function κ: ChB → z ∈ ℂ: |z| = 1, a (possibly empty) closed and open subset K of ChB and a homeomorphism φ: ChB → ChA such that T(f) = κ(f ∘φ) on K and $T\left( f \right) = \kappa \overline\{fo\phi \}$ on ChB K for all f ∈ A. Such a representation holds for surjective real-linear isometries between (not necessarily uniformly closed) function algebras.},
author = {Takeshi Miura},
journal = {Open Mathematics},
keywords = {Commutative Banach algebra; Function algebra; Isometry; Isomorphism; Uniform algebra; function algebra; Choquet boundary; surjection; isometry; isomorphism; homeomorphism},
language = {eng},
number = {4},
pages = {778-788},
title = {Real-linear isometries between function algebras},
url = {http://eudml.org/doc/269446},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Takeshi Miura
TI - Real-linear isometries between function algebras
JO - Open Mathematics
PY - 2011
VL - 9
IS - 4
SP - 778
EP - 788
AB - Let A and B be uniformly closed function algebras on locally compact Hausdorff spaces with Choquet boundaries Ch A and ChB, respectively. We prove that if T: A → B is a surjective real-linear isometry, then there exist a continuous function κ: ChB → z ∈ ℂ: |z| = 1, a (possibly empty) closed and open subset K of ChB and a homeomorphism φ: ChB → ChA such that T(f) = κ(f ∘φ) on K and $T\left( f \right) = \kappa \overline{fo\phi }$ on ChB K for all f ∈ A. Such a representation holds for surjective real-linear isometries between (not necessarily uniformly closed) function algebras.
LA - eng
KW - Commutative Banach algebra; Function algebra; Isometry; Isomorphism; Uniform algebra; function algebra; Choquet boundary; surjection; isometry; isomorphism; homeomorphism
UR - http://eudml.org/doc/269446
ER -

References

top
  1. [1] Araujo J., Font J.J., On Šilov boundaries for subspaces of continuous functions, Topology Appl., 1997, 77(2), 79–85 http://dx.doi.org/10.1016/S0166-8641(96)00132-0 Zbl0870.54018
  2. [2] Burckel R.B., Characterizations of C(X) among its Subalgebras, Lecture Notes in Pure and Appl. Math., 6, Marcel Dekker, New York, 1972 
  3. [3] Ellis A.J., Real characterizations of function algebras amongst function spaces, Bull. Lond. Math. Soc., 1990, 22(4), 381–385 http://dx.doi.org/10.1112/blms/22.4.381 Zbl0713.46016
  4. [4] Fleming R.J., Jamison J.E., Isometries on Banach Spaces: Function Spaces, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math., 129, Chapman & Hall/CRC, Boca Raton, 2003 Zbl1011.46001
  5. [5] Fleming R.J., Jamison J.E., Isometries on Banach Spaces. Vol. 2: Vector-Valued Function Spaces, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math., 138, Chapman & Hall/CRC, Boca Raton, 2008 Zbl0367.46026
  6. [6] Hatori O., Hirasawa G., Miura T., Additively spectral-radius preserving surjections between unital semisimple commutative Banach algebras, Cent. Eur. J. Math., 2010, 8(3), 597–601 http://dx.doi.org/10.2478/s11533-010-0025-4 Zbl1211.46052
  7. [7] Hatori O., Lambert S., Luttman A., Miura T., Tonev T., Yates R., Spectral preservers in commutative Banach algebras, In: Function Spaces in Modern Analysis, Contemp. Math., 547, American Mathematical Society, Providence (in press) Zbl1239.46036
  8. [8] de Leeuw K., Rudin W., Wermer J., The isometries of some function spaces, Proc. Amer. Math. Soc., 1960, 11(5), 694–698 Zbl0097.09802
  9. [9] Mazur S., Ulam S., Sur les transformations isométriques d’espaces vectoriels normés, C. R. Acad. Sci. Paris, 1932, 194, 946–948 Zbl58.0423.01
  10. [10] Nagasawa M., Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kōdai Math. Sem. Rep., 1959, 11(4), 182–188 http://dx.doi.org/10.2996/kmj/1138844205 Zbl0166.40002
  11. [11] Rao N.V., Roy A.K., Multiplicatively spectrum-preserving maps of function algebras. II, Proc. Edinb. Math. Soc., 2005, 48(1), 219–229 http://dx.doi.org/10.1017/S0013091504000719 Zbl1074.46033
  12. [12] Rao N.V., Tonev T.V., Toneva E.T., Uniform algebra isomorphisms and peripheral spectra, In: Topological Algebras and Applications, Contemp. Math., 427, American Mathematical Society, Providence, 2007, 401–416 Zbl1123.46035
  13. [13] Tonev T., Toneva E., Composition operators between subsets of function algebras, In: Function Spaces in Modern Analysis, Contemp. Math., 547, American Mathematical Society, Providence (in press) Zbl1242.46064
  14. [14] Tonev T., Yates R., Norm-linear and norm-additive operators between uniform algebras, J. Math. Anal. Appl., 2009, 357(1), 45–53 http://dx.doi.org/10.1016/j.jmaa.2009.03.039 Zbl1171.47032
  15. [15] Väisälä J., A proof of the Mazur-Ulam theorem, Amer. Math. Monthly, 2003, 110(7), 633–635 http://dx.doi.org/10.2307/3647749 Zbl1046.46017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.