Left-right noncommutative Poisson algebras
José Casas; Tamar Datuashvili; Manuel Ladra
Open Mathematics (2014)
- Volume: 12, Issue: 1, page 57-78
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topJosé Casas, Tamar Datuashvili, and Manuel Ladra. "Left-right noncommutative Poisson algebras." Open Mathematics 12.1 (2014): 57-78. <http://eudml.org/doc/269479>.
@article{JoséCasas2014,
abstract = {The notions of left-right noncommutative Poisson algebra (NPlr-algebra) and left-right algebra with bracket AWBlr are introduced. These algebras are special cases of NLP-algebras and algebras with bracket AWB, respectively, studied earlier. An NPlr-algebra is a noncommutative analogue of the classical Poisson algebra. Properties of these new algebras are studied. In the categories AWBlr and NPlr-algebras the notions of actions, representations, centers, actors and crossed modules are described as special cases of the corresponding wellknown notions in categories of groups with operations. The cohomologies of NPlr-algebras and AWBlr (resp. of NPr-algebras and AWBr) are defined and the relations between them and the Hochschild, Quillen and Leibniz cohomologies are detected. The cases P is a free AWBr, the Hochschild or/and Leibniz cohomological dimension of P is ≤ n are considered separately, exhibiting interesting possibilities of representations of the new cohomologies by the well-known ones and relations between the corresponding cohomological dimensions.},
author = {José Casas, Tamar Datuashvili, Manuel Ladra},
journal = {Open Mathematics},
keywords = {Poisson algebra; Algebras with bracket; Leibniz algebra; Representation; Left-right noncommutative Poisson algebra cohomology; Hochschild, Quillen, Leibniz cohomologies; Cohomological dimension; Extension; Action; Universal strict general actor; Center; Hochschild; Quillen; Leibniz cohomologies; cohomological dimension; extension; action; universal strict general actor; center},
language = {eng},
number = {1},
pages = {57-78},
title = {Left-right noncommutative Poisson algebras},
url = {http://eudml.org/doc/269479},
volume = {12},
year = {2014},
}
TY - JOUR
AU - José Casas
AU - Tamar Datuashvili
AU - Manuel Ladra
TI - Left-right noncommutative Poisson algebras
JO - Open Mathematics
PY - 2014
VL - 12
IS - 1
SP - 57
EP - 78
AB - The notions of left-right noncommutative Poisson algebra (NPlr-algebra) and left-right algebra with bracket AWBlr are introduced. These algebras are special cases of NLP-algebras and algebras with bracket AWB, respectively, studied earlier. An NPlr-algebra is a noncommutative analogue of the classical Poisson algebra. Properties of these new algebras are studied. In the categories AWBlr and NPlr-algebras the notions of actions, representations, centers, actors and crossed modules are described as special cases of the corresponding wellknown notions in categories of groups with operations. The cohomologies of NPlr-algebras and AWBlr (resp. of NPr-algebras and AWBr) are defined and the relations between them and the Hochschild, Quillen and Leibniz cohomologies are detected. The cases P is a free AWBr, the Hochschild or/and Leibniz cohomological dimension of P is ≤ n are considered separately, exhibiting interesting possibilities of representations of the new cohomologies by the well-known ones and relations between the corresponding cohomological dimensions.
LA - eng
KW - Poisson algebra; Algebras with bracket; Leibniz algebra; Representation; Left-right noncommutative Poisson algebra cohomology; Hochschild, Quillen, Leibniz cohomologies; Cohomological dimension; Extension; Action; Universal strict general actor; Center; Hochschild; Quillen; Leibniz cohomologies; cohomological dimension; extension; action; universal strict general actor; center
UR - http://eudml.org/doc/269479
ER -
References
top- [1] Borceux F., Janelidze G., Kelly G.M., Internal object actions, Comment. Math. Univ. Carolin., 2005, 46(2), 235–255 Zbl1121.18004
- [2] Borceux F., Janelidze G., Kelly G.M., On the representability of actions in a semi-abelian category, Theory Appl. Categ., 2005, 14(11), 244–286 Zbl1103.18006
- [3] Bourn D., Janelidze G., Centralizers in action accessible categories, Cah. Topol. Géom. Différ. Catég., 2009, 50(3), 211–232 Zbl1187.18011
- [4] Casas J.M., Datuashvili T., Noncommutative Leibniz-Poisson algebras, Comm. Algebra, 2006, 34(7), 2507–2530 http://dx.doi.org/10.1080/00927870600651091 Zbl1136.17003
- [5] Casas J.M., Datuashvili T., Ladra M., Actor of a precrossed module, Comm. Algebra, 2009, 37(12), 4516–4541 http://dx.doi.org/10.1080/00927870902829130 Zbl1204.18009
- [6] Casas J.M., Datuashvili T., Ladra M., Universal strict general actors and actors in categories of interest, Appl. Categ. Structures, 2010, 18(1), 85–114 http://dx.doi.org/10.1007/s10485-008-9166-z Zbl1200.18001
- [7] Casas J.M., Datuashvili T., Ladra M., Actor of an alternative algebra, preprint available at http://arxiv.org/abs/0910.0550v1 Zbl1285.17003
- [8] Casas J.M., Datuashvili T., Ladra M., Actors in categories of interest, preprint available at http://arxiv.org/abs/math0702574v2 Zbl1200.18001
- [9] Casas J.M., Pirashvili T., Algebras with bracket, Manuscripta Math., 2006, 119(1), 1–15 http://dx.doi.org/10.1007/s00229-005-0551-8 Zbl1100.18005
- [10] Cornish W.H., Amalgamating commutative regular rings, Comment. Math. Univ. Carolin., 1977, 18(3), 423–436 Zbl0378.16011
- [11] Datuashvili T., Cohomologically trivial internal categories in categories of groups with operations, Appl. Categ. Structures, 1995, 3(3), 221–237 http://dx.doi.org/10.1007/BF00878442 Zbl0844.18004
- [12] Dotsenko V., Khoroshkin A., Gröbner bases for operads, Duke Math. J., 2010, 153(2), 363–396 http://dx.doi.org/10.1215/00127094-2010-026 Zbl1208.18007
- [13] Fresse B., Homologie de Quillen pour les algèbres de Poisson, C. R. Acad. Sci. Paris Sér. I Math., 1998, 326(9), 1053–1058 http://dx.doi.org/10.1016/S0764-4442(98)80061-X
- [14] Fresse B., Théorie des opérades de Koszul et homologie des algèbres de Poisson, Ann. Math. Blaise Pascal, 2006, 13(2), 237–312 http://dx.doi.org/10.5802/ambp.219
- [15] Higgins P.J., Groups with multiple operators, Proc. London Math. Soc., 1956, 6(3), 366–416 http://dx.doi.org/10.1112/plms/s3-6.3.366 Zbl0073.01704
- [16] Hochschild G., Cohomology and representations of associative algebras, Duke Math. J., 1947, 14(4), 921–948 http://dx.doi.org/10.1215/S0012-7094-47-01473-7 Zbl0029.34201
- [17] Hoffbeck E., Poincaré-Birkhoff-Witt criterion for Koszul operads, Manuscripta Math., 2010, 131(1–2), 87–110 http://dx.doi.org/10.1007/s00229-009-0303-2 Zbl1207.18009
- [18] Huebschmann J., Poisson cohomology and quantization, J. Reine Angew. Math., 1990, 408, 57–113
- [19] Kanatchikov I.V., On field-theoretic generalizations of a Poisson algebra, Rep. Math. Phys., 1997, 40(2), 225–234 http://dx.doi.org/10.1016/S0034-4877(97)85919-8 Zbl0905.58008
- [20] Kubo F., Finite-dimensional non-commutative Poisson algebras, J. Pure Appl. Algebra, 1996, 113(3), 307–314 http://dx.doi.org/10.1016/0022-4049(95)00151-4
- [21] Kubo F., Non-commutative Poisson algebra structures on affine Kac-Moody algebras, J. Pure Appl. Algebra, 1998, 126(1–3), 267–286 http://dx.doi.org/10.1016/S0022-4049(96)00141-7 Zbl0973.17029
- [22] Loday J.-L., Cyclic Homology, Grundlehren Math. Wiss., 301, Springer, Berlin, 1992
- [23] Loday J.-L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math., 1993, 39(3–4), 269–293
- [24] Loday J.-L., Algèbres ayant deux opérations associatives (digèbres), C. R. Acad. Sci. Paris Sér. I Math., 1995, 321(2), 141–146
- [25] Loday J.-L., Dialgebras, In: Dialgebras and Related Operads, Lecture Notes in Math., 1763, Springer, Berlin, 2001, 7–66 http://dx.doi.org/10.1007/3-540-45328-8_2
- [26] Loday J.-L., Pirashvili T., Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 1993, 296(1), 139–158 http://dx.doi.org/10.1007/BF01445099 Zbl0821.17022
- [27] Loday J.-L., Ronco M., Trialgebras and families of polytopes, In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory, Contemp. Math., 346, American Mathematical Society, Providence, 2004, 369–398 http://dx.doi.org/10.1090/conm/346/06296
- [28] Loday J.-L., Vallette B., Algebraic Operads, Grundlehren Math. Wiss., 346, Springer, Heidelberg, 2012 http://dx.doi.org/10.1007/978-3-642-30362-3
- [29] Montoli A., Action accessibility for categories of interest, Theory Appl. Categ., 2010, 23(1), 7–21 Zbl1307.18015
- [30] Orzech G., Obstruction theory in algebraic categories, I, II, J. Pure Appl. Algebra, 1972, 2(4), 287–340 http://dx.doi.org/10.1016/0022-4049(72)90008-4
- [31] Porter T., Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinburgh Math. Soc., 1987, 30(3), 373–381 http://dx.doi.org/10.1017/S0013091500026766 Zbl0595.18006
- [32] Quillen D., On the (co-)homology of commutative rings, In: Applications of Categorical Algebra, New York, 1968, American Mathematical Society, Providence, 1970, 65–87
- [33] Tong J., Jin Q., Non-commutative Poisson algebra structures on the Lie algebra , Algebra Colloq., 2007, 14(3), 521–536
- [34] Xu P., Noncommutative Poisson algebras, Amer. J. Math., 1994, 116(1), 101–125 http://dx.doi.org/10.2307/2374983 Zbl0797.58012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.