On the homology of mapping spaces
Open Mathematics (2011)
- Volume: 9, Issue: 6, page 1232-1241
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topSemën Podkorytov. "On the homology of mapping spaces." Open Mathematics 9.6 (2011): 1232-1241. <http://eudml.org/doc/269480>.
@article{SemënPodkorytov2011,
abstract = {Following a Bendersky-Gitler idea, we construct an isomorphism between Anderson’s and Arone’s complexes modelling the chain complex of a mapping space. This allows us to apply Shipley’s convergence theorem to Arone’s model. As a corollary, we reduce the problem of homotopy equivalence for certain “toy” spaces to a problem in homological algebra.},
author = {Semën Podkorytov},
journal = {Open Mathematics},
keywords = {Arone spectral sequence; Anderson spectral sequence; Vassiliev spectral sequence},
language = {eng},
number = {6},
pages = {1232-1241},
title = {On the homology of mapping spaces},
url = {http://eudml.org/doc/269480},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Semën Podkorytov
TI - On the homology of mapping spaces
JO - Open Mathematics
PY - 2011
VL - 9
IS - 6
SP - 1232
EP - 1241
AB - Following a Bendersky-Gitler idea, we construct an isomorphism between Anderson’s and Arone’s complexes modelling the chain complex of a mapping space. This allows us to apply Shipley’s convergence theorem to Arone’s model. As a corollary, we reduce the problem of homotopy equivalence for certain “toy” spaces to a problem in homological algebra.
LA - eng
KW - Arone spectral sequence; Anderson spectral sequence; Vassiliev spectral sequence
UR - http://eudml.org/doc/269480
ER -
References
top- [1] Ahearn S.T., Kuhn N.J., Product and other fine structure in polynomial resolutions of mapping spaces, Algebr. Geom. Topol., 2002, 2, 591–647 http://dx.doi.org/10.2140/agt.2002.2.591 Zbl1015.55006
- [2] Anderson D.W., A generalization of the Eilenberg-Moore spectral sequence, Bull. Amer. Math. Soc., 1972, 78(5), 784–786 http://dx.doi.org/10.1090/S0002-9904-1972-13034-9 Zbl0255.55012
- [3] Arone G., A generalization of Snaith-type filtration, Trans. Amer. Math. Soc., 1999, 351(3), 1123–1150 http://dx.doi.org/10.1090/S0002-9947-99-02405-8 Zbl0945.55011
- [4] Bendersky M., Gitler S., The cohomology of certain function spaces, Trans. Amer. Math. Soc., 1991, 326(1), 423–440 http://dx.doi.org/10.2307/2001871 Zbl0738.54007
- [5] Boardman J.M., Conditionally convergent spectral sequences, In: Homotopy Invariant Algebraic Structures, Baltimore, 1998, Contemp. Math., 239, American Mathematical Society, Providence, 1999, 49–84 Zbl0947.55020
- [6] Bousfield A.K., On the homology spectral sequence of a cosimplicial space, Amer. J. Math., 1987, 109(2), 361–394 http://dx.doi.org/10.2307/2374579 Zbl0623.55009
- [7] Bousfield A.K., Kan D.M., Homotopy Limits, Completions and Localizations, Lecture Notes in Math., 304, Springer, Berlin-New York, 1972 http://dx.doi.org/10.1007/978-3-540-38117-4 Zbl0259.55004
- [8] McCarthy R., On n-excisive functors of module categories, preprint available at www.math.uiuc.edu/~randy/Vita/Papers/DEGCLT3.pdf
- [9] Pirashvili T., Dold-Kan type theorem for Γ-groups, Math. Ann., 2000, 318(2), 277–298 http://dx.doi.org/10.1007/s002080000120
- [10] Podkorytov S.S., Commutative algebras and representations of the category of finite sets, preprint available at http://arxiv.org/abs/1011.6192
- [11] Shipley B.E., Convergence of the homology spectral sequence of a cosimplicial space, Amer. J. Math., 1996, 118(1), 179–207 http://dx.doi.org/10.1353/ajm.1996.0004 Zbl0864.55017
- [12] Vassiliev V.A., Complements of Discriminants of Smooth Maps: Topology and Applications, Transl. Math. Monogr., 98, American Mathematical Society, Providence, 1992
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.