On the dimension of the attractor for a perturbed 3d Ladyzhenskaya model

Dalibor Pražák; Josef Žabenský

Open Mathematics (2013)

  • Volume: 11, Issue: 7, page 1264-1282
  • ISSN: 2391-5455

Abstract

top
We consider the so-called Ladyzhenskaya model of incompressible fluid, with an additional artificial smoothing term ɛΔ3. We establish the global existence, uniqueness, and regularity of solutions. Finally, we show that there exists an exponential attractor, whose dimension we estimate in terms of the relevant physical quantities, independently of ɛ > 0.

How to cite

top

Dalibor Pražák, and Josef Žabenský. "On the dimension of the attractor for a perturbed 3d Ladyzhenskaya model." Open Mathematics 11.7 (2013): 1264-1282. <http://eudml.org/doc/269498>.

@article{DaliborPražák2013,
abstract = {We consider the so-called Ladyzhenskaya model of incompressible fluid, with an additional artificial smoothing term ɛΔ3. We establish the global existence, uniqueness, and regularity of solutions. Finally, we show that there exists an exponential attractor, whose dimension we estimate in terms of the relevant physical quantities, independently of ɛ > 0.},
author = {Dalibor Pražák, Josef Žabenský},
journal = {Open Mathematics},
keywords = {Ladyzhenskaya fluid; Exponential attractor; Fractal dimension; Lyapunov exponents; exponential attractor; fractal dimension},
language = {eng},
number = {7},
pages = {1264-1282},
title = {On the dimension of the attractor for a perturbed 3d Ladyzhenskaya model},
url = {http://eudml.org/doc/269498},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Dalibor Pražák
AU - Josef Žabenský
TI - On the dimension of the attractor for a perturbed 3d Ladyzhenskaya model
JO - Open Mathematics
PY - 2013
VL - 11
IS - 7
SP - 1264
EP - 1282
AB - We consider the so-called Ladyzhenskaya model of incompressible fluid, with an additional artificial smoothing term ɛΔ3. We establish the global existence, uniqueness, and regularity of solutions. Finally, we show that there exists an exponential attractor, whose dimension we estimate in terms of the relevant physical quantities, independently of ɛ > 0.
LA - eng
KW - Ladyzhenskaya fluid; Exponential attractor; Fractal dimension; Lyapunov exponents; exponential attractor; fractal dimension
UR - http://eudml.org/doc/269498
ER -

References

top
  1. [1] Ball J.M., Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 1997, 7(5), 475–502 http://dx.doi.org/10.1007/s003329900037[Crossref] Zbl0903.58020
  2. [2] Bulíček M., Ettwein F., Kaplický P., Pražák D., The dimension of the attractor for the 3D flow of a non-Newtonian fluid, Commun. Pure Appl. Anal., 2009, 8(5), 1503–1520 http://dx.doi.org/10.3934/cpaa.2009.8.1503[WoS][Crossref] Zbl1200.37074
  3. [3] Bulíček M., Ettwein F., Kaplický P., Pražák D., On uniqueness and time regularity of flows of power-law like non-Newtonian fluids, Math. Methods Appl. Sci., 2010, 33(16), 1995–2010 Zbl1202.35152
  4. [4] Constantin P., Foias C., Navier-Stokes Equations, Chicago Lectures in Math., The University of Chicago Press, Chicago, 1988 Zbl0687.35071
  5. [5] Feireisl E., Pražák D., Asymptotic Behavior of Dynamical Systems in Fluid Mechanics, AIMS Ser. Appl. Math., 4, American Institute of Mathematical Sciences, Springfield, 2010 Zbl1198.37002
  6. [6] Ladyzhenskaya O.A., New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems, Proc. Steklov Inst. Math., 1967, 102, 95–118 
  7. [7] Lions J.-L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969 
  8. [8] Málek J., Nečas J., Rokyta M., Růžička M., Weak and Measure-Valued Solutions to Evolutionary PDEs, Appl. Math. Math. Comput., 13, Chapman & Hall, London, 1996 Zbl0851.35002
  9. [9] de Rham G., Variétés Différentiables, 3rd ed., Publications de l’Institut de mathématique de l’Université de Nancago, 3, Hermann, Paris, 1973 
  10. [10] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Appl. Math. Sci., 68, Springer, New York, 1997 [Crossref] Zbl0871.35001
  11. [11] Temam R., Navier-Stokes Equations, American Mathematical Society Chelsea, Providence, 2001 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.