Consonance and Cantor set-selectors

Valentin Gutev

Open Mathematics (2013)

  • Volume: 11, Issue: 2, page 341-348
  • ISSN: 2391-5455

Abstract

top
It is shown that every metrizable consonant space is a Cantor set-selector. Some applications are derived from this fact, also the relationship is discussed in the framework of hyperspaces and Prohorov spaces.

How to cite

top

Valentin Gutev. "Consonance and Cantor set-selectors." Open Mathematics 11.2 (2013): 341-348. <http://eudml.org/doc/269500>.

@article{ValentinGutev2013,
abstract = {It is shown that every metrizable consonant space is a Cantor set-selector. Some applications are derived from this fact, also the relationship is discussed in the framework of hyperspaces and Prohorov spaces.},
author = {Valentin Gutev},
journal = {Open Mathematics},
keywords = {Set-valued mapping; Lower (upper) semi-continuous; Selection; Section; Consonant space; set-valued mapping; lower (upper) semi-continuous; selection; section; consonant space},
language = {eng},
number = {2},
pages = {341-348},
title = {Consonance and Cantor set-selectors},
url = {http://eudml.org/doc/269500},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Valentin Gutev
TI - Consonance and Cantor set-selectors
JO - Open Mathematics
PY - 2013
VL - 11
IS - 2
SP - 341
EP - 348
AB - It is shown that every metrizable consonant space is a Cantor set-selector. Some applications are derived from this fact, also the relationship is discussed in the framework of hyperspaces and Prohorov spaces.
LA - eng
KW - Set-valued mapping; Lower (upper) semi-continuous; Selection; Section; Consonant space; set-valued mapping; lower (upper) semi-continuous; selection; section; consonant space
UR - http://eudml.org/doc/269500
ER -

References

top
  1. [1] Alleche B., Calbrix J., On the coincidence of the upper Kuratowski topology with the cocompact topology, Topology Appl., 1999, 93(3), 207–218 http://dx.doi.org/10.1016/S0166-8641(97)00269-1 Zbl0943.54013
  2. [2] Banakh T.O., Topology of spaces of probability measures. I. The functors P τ and P̃, Mat. Stud., 1995, 5, 65–87 (in Russian) Zbl1023.28501
  3. [3] Borges C.J.R., A study of multivalued functions, Pacific J. Math., 1967, 23, 451–461 Zbl0153.24204
  4. [4] Bouziad A., Borel measures in consonant spaces, Topology Appl., 1996, 70(2–3), 125–132 http://dx.doi.org/10.1016/0166-8641(95)00089-5 
  5. [5] Bouziad A., A note on consonance of P δ subsets, Topology Appl., 1998, 87(1), 53–61 http://dx.doi.org/10.1016/S0166-8641(97)00131-4 
  6. [6] Bouziad A., Consonance and topological completeness in analytic spaces, Proc. Amer. Math. Soc., 1999, 127(12), 3733–3737 http://dx.doi.org/10.1090/S0002-9939-99-04902-3 Zbl0976.54036
  7. [7] Bouziad A., Filters, consonance and hereditary Baireness, Topology Appl., 2000, 104(1–3), 27–38 http://dx.doi.org/10.1016/S0166-8641(99)00014-0 
  8. [8] Choban M.M., Many-valued mappings and Borel sets. I, Trans. Moscow Math. Soc., 1970, 22, 258–280 
  9. [9] Costantini C., Watson S., On the dissonance of some metrizable spaces, Topology Appl., 1998, 84(1–3), 259–268 http://dx.doi.org/10.1016/S0166-8641(97)00096-5 Zbl0966.54005
  10. [10] Debs G., Espaces héréditairement de Baire, Fund. Math., 1988, 129(3), 199–206 Zbl0656.54023
  11. [11] Dolecki S., Greco G.H., Lechicki A., Sur la topologie de la convergence supérieure de Kuratowski, C. R. Acad. Sci. Paris, 1991, 312(12), 923–926 
  12. [12] Dolecki S., Greco G.H., Lechicki A., When do the upper Kuratowski topology (homeomorphically, Scott topology) and the co-compact topology coincide?, Trans. Amer. Math. Soc., 1995, 347(8), 2869–2884 http://dx.doi.org/10.1090/S0002-9947-1995-1303118-7 Zbl0845.54005
  13. [13] El’kin A.G., A-sets in complete metric spaces, Dokl. Akad. Nauk SSSR, 1967, 175, 517–520 
  14. [14] Gutev V., Selections and approximations in finite-dimensional spaces, Topology Appl., 2005, 146–147, 353–383 http://dx.doi.org/10.1016/j.topol.2003.06.002 
  15. [15] Gutev V., Completeness, sections and selections, Set-Valued Anal., 2007, 15(3), 275–295 http://dx.doi.org/10.1007/s11228-007-0041-0 Zbl1140.54003
  16. [16] Gutev V., Nedev S., Pelant J., Valov V., Cantor set selectors, Topology Appl., 1992, 44(1–3), 163–166 http://dx.doi.org/10.1016/0166-8641(92)90089-I Zbl0769.54020
  17. [17] Gutev V., Valov V., Sections, selections and Prohorov’s theorem, J. Math. Anal. Appl., 2009, 360(2), 377–379 http://dx.doi.org/10.1016/j.jmaa.2009.06.063 Zbl1185.28022
  18. [18] Koumoullis G., Cantor sets in Prohorov spaces, Fund. Math., 1984, 124(2), 155–161 Zbl0562.54052
  19. [19] Kuratowski K., Topology. I, Academic Press, New York-London; PWN, Warsaw, 1966 
  20. [20] Michael E., Continuous selections. I, Ann. of Math., 1956, 63, 361–382 http://dx.doi.org/10.2307/1969615 Zbl0071.15902
  21. [21] Michael E., Continuous selections. II, Ann. of Math., 1956, 64, 562–580 http://dx.doi.org/10.2307/1969603 Zbl0073.17702
  22. [22] Michael E., A theorem on semi-continuous set-valued functions, Duke Math. J., 1959, 26, 647–651 http://dx.doi.org/10.1215/S0012-7094-59-02662-6 Zbl0151.30805
  23. [23] van Mill J., Pelant J., Pol R., Selections that characterize topological completeness, Fund. Math., 1996, 149(2), 127–141 Zbl0861.54016
  24. [24] Nedev S.J., Valov V.M., On metrizability of selectors, C. R. Acad. Bulgare Sci., 1983, 36(11), 1363–1366 Zbl0549.54013
  25. [25] Nogura T., Shakhmatov D., When does the Fell topology on a hyperspace of closed sets coincide with the meet of the upper Kuratowski and the lower Vietoris topologies?, Topology Appl., 1996, 70(2–3), 213–243 http://dx.doi.org/10.1016/0166-8641(95)00098-4 Zbl0848.54007
  26. [26] Preiss D., Metric spaces in which Prohorov’s theorem is not valid, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 1973, 27, 109–116 http://dx.doi.org/10.1007/BF00536621 Zbl0255.60002
  27. [27] Prokhorov Yu.V., Convergence of random processes and limit theorems in probability theory, Theory Probab. Appl., 1956, 1(2), 157–214 http://dx.doi.org/10.1137/1101016 
  28. [28] Przymusinski T., Collectionwise normality and absolute retracts, Fund. Math., 1978, 98(1), 61–73 Zbl0391.54007
  29. [29] Scott D., Continuous lattices, In: Toposes, Algebraic Geometry and Logic, Halifax, January 16–19, 1971, Lecture Notes in Math., 274, Springer, Berlin, 1972, 97–136 http://dx.doi.org/10.1007/BFb0073967 
  30. [30] Stone A.H., On σ-discreteness and Borel isomorphism, Amer. J. Math., 1963, 85, 655–666 http://dx.doi.org/10.2307/2373113 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.