Consonance and Cantor set-selectors
Open Mathematics (2013)
- Volume: 11, Issue: 2, page 341-348
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topValentin Gutev. "Consonance and Cantor set-selectors." Open Mathematics 11.2 (2013): 341-348. <http://eudml.org/doc/269500>.
@article{ValentinGutev2013,
abstract = {It is shown that every metrizable consonant space is a Cantor set-selector. Some applications are derived from this fact, also the relationship is discussed in the framework of hyperspaces and Prohorov spaces.},
author = {Valentin Gutev},
journal = {Open Mathematics},
keywords = {Set-valued mapping; Lower (upper) semi-continuous; Selection; Section; Consonant space; set-valued mapping; lower (upper) semi-continuous; selection; section; consonant space},
language = {eng},
number = {2},
pages = {341-348},
title = {Consonance and Cantor set-selectors},
url = {http://eudml.org/doc/269500},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Valentin Gutev
TI - Consonance and Cantor set-selectors
JO - Open Mathematics
PY - 2013
VL - 11
IS - 2
SP - 341
EP - 348
AB - It is shown that every metrizable consonant space is a Cantor set-selector. Some applications are derived from this fact, also the relationship is discussed in the framework of hyperspaces and Prohorov spaces.
LA - eng
KW - Set-valued mapping; Lower (upper) semi-continuous; Selection; Section; Consonant space; set-valued mapping; lower (upper) semi-continuous; selection; section; consonant space
UR - http://eudml.org/doc/269500
ER -
References
top- [1] Alleche B., Calbrix J., On the coincidence of the upper Kuratowski topology with the cocompact topology, Topology Appl., 1999, 93(3), 207–218 http://dx.doi.org/10.1016/S0166-8641(97)00269-1 Zbl0943.54013
- [2] Banakh T.O., Topology of spaces of probability measures. I. The functors P τ and P̃, Mat. Stud., 1995, 5, 65–87 (in Russian) Zbl1023.28501
- [3] Borges C.J.R., A study of multivalued functions, Pacific J. Math., 1967, 23, 451–461 Zbl0153.24204
- [4] Bouziad A., Borel measures in consonant spaces, Topology Appl., 1996, 70(2–3), 125–132 http://dx.doi.org/10.1016/0166-8641(95)00089-5
- [5] Bouziad A., A note on consonance of P δ subsets, Topology Appl., 1998, 87(1), 53–61 http://dx.doi.org/10.1016/S0166-8641(97)00131-4
- [6] Bouziad A., Consonance and topological completeness in analytic spaces, Proc. Amer. Math. Soc., 1999, 127(12), 3733–3737 http://dx.doi.org/10.1090/S0002-9939-99-04902-3 Zbl0976.54036
- [7] Bouziad A., Filters, consonance and hereditary Baireness, Topology Appl., 2000, 104(1–3), 27–38 http://dx.doi.org/10.1016/S0166-8641(99)00014-0
- [8] Choban M.M., Many-valued mappings and Borel sets. I, Trans. Moscow Math. Soc., 1970, 22, 258–280
- [9] Costantini C., Watson S., On the dissonance of some metrizable spaces, Topology Appl., 1998, 84(1–3), 259–268 http://dx.doi.org/10.1016/S0166-8641(97)00096-5 Zbl0966.54005
- [10] Debs G., Espaces héréditairement de Baire, Fund. Math., 1988, 129(3), 199–206 Zbl0656.54023
- [11] Dolecki S., Greco G.H., Lechicki A., Sur la topologie de la convergence supérieure de Kuratowski, C. R. Acad. Sci. Paris, 1991, 312(12), 923–926
- [12] Dolecki S., Greco G.H., Lechicki A., When do the upper Kuratowski topology (homeomorphically, Scott topology) and the co-compact topology coincide?, Trans. Amer. Math. Soc., 1995, 347(8), 2869–2884 http://dx.doi.org/10.1090/S0002-9947-1995-1303118-7 Zbl0845.54005
- [13] El’kin A.G., A-sets in complete metric spaces, Dokl. Akad. Nauk SSSR, 1967, 175, 517–520
- [14] Gutev V., Selections and approximations in finite-dimensional spaces, Topology Appl., 2005, 146–147, 353–383 http://dx.doi.org/10.1016/j.topol.2003.06.002
- [15] Gutev V., Completeness, sections and selections, Set-Valued Anal., 2007, 15(3), 275–295 http://dx.doi.org/10.1007/s11228-007-0041-0 Zbl1140.54003
- [16] Gutev V., Nedev S., Pelant J., Valov V., Cantor set selectors, Topology Appl., 1992, 44(1–3), 163–166 http://dx.doi.org/10.1016/0166-8641(92)90089-I Zbl0769.54020
- [17] Gutev V., Valov V., Sections, selections and Prohorov’s theorem, J. Math. Anal. Appl., 2009, 360(2), 377–379 http://dx.doi.org/10.1016/j.jmaa.2009.06.063 Zbl1185.28022
- [18] Koumoullis G., Cantor sets in Prohorov spaces, Fund. Math., 1984, 124(2), 155–161 Zbl0562.54052
- [19] Kuratowski K., Topology. I, Academic Press, New York-London; PWN, Warsaw, 1966
- [20] Michael E., Continuous selections. I, Ann. of Math., 1956, 63, 361–382 http://dx.doi.org/10.2307/1969615 Zbl0071.15902
- [21] Michael E., Continuous selections. II, Ann. of Math., 1956, 64, 562–580 http://dx.doi.org/10.2307/1969603 Zbl0073.17702
- [22] Michael E., A theorem on semi-continuous set-valued functions, Duke Math. J., 1959, 26, 647–651 http://dx.doi.org/10.1215/S0012-7094-59-02662-6 Zbl0151.30805
- [23] van Mill J., Pelant J., Pol R., Selections that characterize topological completeness, Fund. Math., 1996, 149(2), 127–141 Zbl0861.54016
- [24] Nedev S.J., Valov V.M., On metrizability of selectors, C. R. Acad. Bulgare Sci., 1983, 36(11), 1363–1366 Zbl0549.54013
- [25] Nogura T., Shakhmatov D., When does the Fell topology on a hyperspace of closed sets coincide with the meet of the upper Kuratowski and the lower Vietoris topologies?, Topology Appl., 1996, 70(2–3), 213–243 http://dx.doi.org/10.1016/0166-8641(95)00098-4 Zbl0848.54007
- [26] Preiss D., Metric spaces in which Prohorov’s theorem is not valid, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 1973, 27, 109–116 http://dx.doi.org/10.1007/BF00536621 Zbl0255.60002
- [27] Prokhorov Yu.V., Convergence of random processes and limit theorems in probability theory, Theory Probab. Appl., 1956, 1(2), 157–214 http://dx.doi.org/10.1137/1101016
- [28] Przymusinski T., Collectionwise normality and absolute retracts, Fund. Math., 1978, 98(1), 61–73 Zbl0391.54007
- [29] Scott D., Continuous lattices, In: Toposes, Algebraic Geometry and Logic, Halifax, January 16–19, 1971, Lecture Notes in Math., 274, Springer, Berlin, 1972, 97–136 http://dx.doi.org/10.1007/BFb0073967
- [30] Stone A.H., On σ-discreteness and Borel isomorphism, Amer. J. Math., 1963, 85, 655–666 http://dx.doi.org/10.2307/2373113
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.