Analysis and numerical approximation of a parabolic-hyperbolic transmission problem
Open Mathematics (2012)
- Volume: 10, Issue: 1, page 73-84
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topBoško Jovanović, and Lubin Vulkov. "Analysis and numerical approximation of a parabolic-hyperbolic transmission problem." Open Mathematics 10.1 (2012): 73-84. <http://eudml.org/doc/269510>.
@article{BoškoJovanović2012,
abstract = {In this paper we investigate a mixed parabolic-hyperbolic initial boundary value problem in two disconnected intervals with Robin-Dirichlet conjugation conditions. A finite difference scheme approximating this problem is proposed and analyzed. An estimate of the convergence rate is obtained.},
author = {Boško Jovanović, Lubin Vulkov},
journal = {Open Mathematics},
keywords = {Transmission problem; Initial-boundary value problem; Disconnected domains; Sobolev spaces; Finite differences; Convergence rate; finite difference methods; parabolic-hyperbolic transmission; Robin-Dirichlet transmission conditions; initial-boundary value problem; disconnected domains; convergence},
language = {eng},
number = {1},
pages = {73-84},
title = {Analysis and numerical approximation of a parabolic-hyperbolic transmission problem},
url = {http://eudml.org/doc/269510},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Boško Jovanović
AU - Lubin Vulkov
TI - Analysis and numerical approximation of a parabolic-hyperbolic transmission problem
JO - Open Mathematics
PY - 2012
VL - 10
IS - 1
SP - 73
EP - 84
AB - In this paper we investigate a mixed parabolic-hyperbolic initial boundary value problem in two disconnected intervals with Robin-Dirichlet conjugation conditions. A finite difference scheme approximating this problem is proposed and analyzed. An estimate of the convergence rate is obtained.
LA - eng
KW - Transmission problem; Initial-boundary value problem; Disconnected domains; Sobolev spaces; Finite differences; Convergence rate; finite difference methods; parabolic-hyperbolic transmission; Robin-Dirichlet transmission conditions; initial-boundary value problem; disconnected domains; convergence
UR - http://eudml.org/doc/269510
ER -
References
top- [1] Aldroubi A., Renardy M., Energy methods for a parabolic-hyperbolic interface problem arising in electromagnetism, Z. Angew. Math. Phys., 1988, 39(6), 931–936 http://dx.doi.org/10.1007/BF00945129 Zbl0726.35087
- [2] Berres S., Bürger R., Karlsen K.H., Tory E.M., Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math., 2003, 64(1), 41–80 http://dx.doi.org/10.1137/S0036139902408163 Zbl1047.35071
- [3] Bouziani A., Solution of a transmission problem for semilinear parabolic-hyperbolic equations by the timediscretization method, J. Appl. Math. Stoch. Anal., 2006, #61439 Zbl1112.35347
- [4] Bramble J.H., Hilbert S.R., Bounds for a class of linear functionals with application to Hermite interpolation, Numer. Math., 1971, 16(4), 362–369 http://dx.doi.org/10.1007/BF02165007 Zbl0214.41405
- [5] Cao Y., Yin J., Liu Q., Li M., A class of nonlinear parabolic-hyperbolic equations applied to image restoration, Nonlinear Anal. Real World Appl., 2010, 11(1), 253–261 http://dx.doi.org/10.1016/j.nonrwa.2008.11.004 Zbl1180.35378
- [6] Datta A.K., Biological and Bioenvironmental Heat and Mass Transfer, Marcel Dekker, New York, 2002 http://dx.doi.org/10.1201/9780203910184
- [7] Dupont T., Scott R., Polynomial approximation of functions in Sobolev spaces, Math. Comp., 1980, 34(150), 441–463 http://dx.doi.org/10.1090/S0025-5718-1980-0559195-7 Zbl0423.65009
- [8] Gegovska-Zajkova S., Jovanovic B.S., Jovanovic I.M., On the numerical solution of a transmission eigenvalue problem, Lecture Notes in Comput. Sci., 5434, Springer, Berlin, 2009, 289–297 Zbl1233.65083
- [9] Givoli D., Exact representation on artificial interfaces and applications in mechanics, Applied Mechanics Reviews, 1999, 52(11), 333–349 http://dx.doi.org/10.1115/1.3098920
- [10] Jovanović B.S., The Finite Difference Method for Boundary-Value Problems with Weak Solutions, Posebna Izdan., 16, Matematički Institut u Beogradu, Belgrade, 1993
- [11] Jovanović B.S., Vulkov L.G., Numerical solution of a hyperbolic transmission problem, Comput. Methods Appl. Math., 2008, 8(4), 374–385 Zbl1202.65111
- [12] Jovanović B.S., Vulkov L.G., Numerical solution of a two-dimensional parabolic transmission problem, Int. J. Numer. Anal. Model., 2010, 7(1), 156–172
- [13] Jovanović B.S., Vulkov L.G., Numerical solution of a parabolic transmission problem, IMA J. Numer. Anal., 2011, 31(1), 233–253 http://dx.doi.org/10.1093/imanum/drn077 Zbl1215.65141
- [14] Korzyuk V.I., A conjugacy problem for equations of hyperbolic and parabolic types, Differencial’nye Uravnenija, 1968, 4(10), 1855–1866 (in Russian) Zbl0165.11201
- [15] Korzyuk V.I., Lemeshevsky S.V., Problems on conjugation of polytypic equations, Math. Model. Anal., 2001, 6(1), 106–116 Zbl1003.35100
- [16] Lions J.-L., Magenes E., Non-Homogeneous Boundary Value Problems and Applications. I, Grundlehren Math. Wiss., 181, Springer, Berlin-Heidelberg-New York, 1972
- [17] Mascia C., Porretta A., Terracina A., Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations, Arch. Ration. Mech. Anal., 2002, 163(2), 87–124 http://dx.doi.org/10.1007/s002050200184 Zbl1027.35081
- [18] Oganesyan L.A., Rukhovets L.A., Variational-Difference Methods for Solving Elliptic Equations, Akad. Nauk Armyan. SSR, Erevan, 1979 (in Russian) Zbl0496.65053
- [19] Qin Y., Nonlinear Parabolic-Hyperbolic Coupled Systems and their Attractors, Oper. Theory Adv. Appl., 184, Birkhäuser, Basel, 2008
- [20] Rogov B.V., Hyperbolic-parabolic approximation of the Reynolds equations for turbulent flows of chemically reacting gas mixtures, Mat. Model., 2004, 16(12), 20–39 (in Russian) Zbl1097.76585
- [21] Samarskii A.A., The Theory of Difference Schemes, Monogr. Textbooks Pure Appl. Math., 240, Marcel Dekker, New York, 2001 http://dx.doi.org/10.1201/9780203908518
- [22] Samarskii A.A., Korzyuk V.I., Lemeshevsky S.V., Matus P.P., Difference schemes for the conjugation problem of hyperbolic and parabolic equations on moving grids, Dokl. Akad. Nauk, 1998, 361(3), 321–324 (in Russian)
- [23] Samarskii A.A., Korzyuk V.I., Lemeshevsky S.V., Matus P.P., Finite-difference methods for problem of conjugation of hyperbolic and parabolic equations, Math. Models Methods Appl. Sci., 2000, 10(3), 361–377 http://dx.doi.org/10.1142/S0218202500000227 Zbl1012.65087
- [24] Samarskii A.A., Lazarov R.D., Makarov V.L., Difference Schemes for Differential Equations with Generalized Solutions, Vysshaya Shkola, Moscow, 1987 (in Russian)
- [25] Wloka J., Partial Differential Equations, Cambridge University Press, Cambridge, 1987
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.