Analysis and numerical approximation of a parabolic-hyperbolic transmission problem

Boško Jovanović; Lubin Vulkov

Open Mathematics (2012)

  • Volume: 10, Issue: 1, page 73-84
  • ISSN: 2391-5455

Abstract

top
In this paper we investigate a mixed parabolic-hyperbolic initial boundary value problem in two disconnected intervals with Robin-Dirichlet conjugation conditions. A finite difference scheme approximating this problem is proposed and analyzed. An estimate of the convergence rate is obtained.

How to cite

top

Boško Jovanović, and Lubin Vulkov. "Analysis and numerical approximation of a parabolic-hyperbolic transmission problem." Open Mathematics 10.1 (2012): 73-84. <http://eudml.org/doc/269510>.

@article{BoškoJovanović2012,
abstract = {In this paper we investigate a mixed parabolic-hyperbolic initial boundary value problem in two disconnected intervals with Robin-Dirichlet conjugation conditions. A finite difference scheme approximating this problem is proposed and analyzed. An estimate of the convergence rate is obtained.},
author = {Boško Jovanović, Lubin Vulkov},
journal = {Open Mathematics},
keywords = {Transmission problem; Initial-boundary value problem; Disconnected domains; Sobolev spaces; Finite differences; Convergence rate; finite difference methods; parabolic-hyperbolic transmission; Robin-Dirichlet transmission conditions; initial-boundary value problem; disconnected domains; convergence},
language = {eng},
number = {1},
pages = {73-84},
title = {Analysis and numerical approximation of a parabolic-hyperbolic transmission problem},
url = {http://eudml.org/doc/269510},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Boško Jovanović
AU - Lubin Vulkov
TI - Analysis and numerical approximation of a parabolic-hyperbolic transmission problem
JO - Open Mathematics
PY - 2012
VL - 10
IS - 1
SP - 73
EP - 84
AB - In this paper we investigate a mixed parabolic-hyperbolic initial boundary value problem in two disconnected intervals with Robin-Dirichlet conjugation conditions. A finite difference scheme approximating this problem is proposed and analyzed. An estimate of the convergence rate is obtained.
LA - eng
KW - Transmission problem; Initial-boundary value problem; Disconnected domains; Sobolev spaces; Finite differences; Convergence rate; finite difference methods; parabolic-hyperbolic transmission; Robin-Dirichlet transmission conditions; initial-boundary value problem; disconnected domains; convergence
UR - http://eudml.org/doc/269510
ER -

References

top
  1. [1] Aldroubi A., Renardy M., Energy methods for a parabolic-hyperbolic interface problem arising in electromagnetism, Z. Angew. Math. Phys., 1988, 39(6), 931–936 http://dx.doi.org/10.1007/BF00945129 Zbl0726.35087
  2. [2] Berres S., Bürger R., Karlsen K.H., Tory E.M., Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math., 2003, 64(1), 41–80 http://dx.doi.org/10.1137/S0036139902408163 Zbl1047.35071
  3. [3] Bouziani A., Solution of a transmission problem for semilinear parabolic-hyperbolic equations by the timediscretization method, J. Appl. Math. Stoch. Anal., 2006, #61439 Zbl1112.35347
  4. [4] Bramble J.H., Hilbert S.R., Bounds for a class of linear functionals with application to Hermite interpolation, Numer. Math., 1971, 16(4), 362–369 http://dx.doi.org/10.1007/BF02165007 Zbl0214.41405
  5. [5] Cao Y., Yin J., Liu Q., Li M., A class of nonlinear parabolic-hyperbolic equations applied to image restoration, Nonlinear Anal. Real World Appl., 2010, 11(1), 253–261 http://dx.doi.org/10.1016/j.nonrwa.2008.11.004 Zbl1180.35378
  6. [6] Datta A.K., Biological and Bioenvironmental Heat and Mass Transfer, Marcel Dekker, New York, 2002 http://dx.doi.org/10.1201/9780203910184 
  7. [7] Dupont T., Scott R., Polynomial approximation of functions in Sobolev spaces, Math. Comp., 1980, 34(150), 441–463 http://dx.doi.org/10.1090/S0025-5718-1980-0559195-7 Zbl0423.65009
  8. [8] Gegovska-Zajkova S., Jovanovic B.S., Jovanovic I.M., On the numerical solution of a transmission eigenvalue problem, Lecture Notes in Comput. Sci., 5434, Springer, Berlin, 2009, 289–297 Zbl1233.65083
  9. [9] Givoli D., Exact representation on artificial interfaces and applications in mechanics, Applied Mechanics Reviews, 1999, 52(11), 333–349 http://dx.doi.org/10.1115/1.3098920 
  10. [10] Jovanović B.S., The Finite Difference Method for Boundary-Value Problems with Weak Solutions, Posebna Izdan., 16, Matematički Institut u Beogradu, Belgrade, 1993 
  11. [11] Jovanović B.S., Vulkov L.G., Numerical solution of a hyperbolic transmission problem, Comput. Methods Appl. Math., 2008, 8(4), 374–385 Zbl1202.65111
  12. [12] Jovanović B.S., Vulkov L.G., Numerical solution of a two-dimensional parabolic transmission problem, Int. J. Numer. Anal. Model., 2010, 7(1), 156–172 
  13. [13] Jovanović B.S., Vulkov L.G., Numerical solution of a parabolic transmission problem, IMA J. Numer. Anal., 2011, 31(1), 233–253 http://dx.doi.org/10.1093/imanum/drn077 Zbl1215.65141
  14. [14] Korzyuk V.I., A conjugacy problem for equations of hyperbolic and parabolic types, Differencial’nye Uravnenija, 1968, 4(10), 1855–1866 (in Russian) Zbl0165.11201
  15. [15] Korzyuk V.I., Lemeshevsky S.V., Problems on conjugation of polytypic equations, Math. Model. Anal., 2001, 6(1), 106–116 Zbl1003.35100
  16. [16] Lions J.-L., Magenes E., Non-Homogeneous Boundary Value Problems and Applications. I, Grundlehren Math. Wiss., 181, Springer, Berlin-Heidelberg-New York, 1972 
  17. [17] Mascia C., Porretta A., Terracina A., Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations, Arch. Ration. Mech. Anal., 2002, 163(2), 87–124 http://dx.doi.org/10.1007/s002050200184 Zbl1027.35081
  18. [18] Oganesyan L.A., Rukhovets L.A., Variational-Difference Methods for Solving Elliptic Equations, Akad. Nauk Armyan. SSR, Erevan, 1979 (in Russian) Zbl0496.65053
  19. [19] Qin Y., Nonlinear Parabolic-Hyperbolic Coupled Systems and their Attractors, Oper. Theory Adv. Appl., 184, Birkhäuser, Basel, 2008 
  20. [20] Rogov B.V., Hyperbolic-parabolic approximation of the Reynolds equations for turbulent flows of chemically reacting gas mixtures, Mat. Model., 2004, 16(12), 20–39 (in Russian) Zbl1097.76585
  21. [21] Samarskii A.A., The Theory of Difference Schemes, Monogr. Textbooks Pure Appl. Math., 240, Marcel Dekker, New York, 2001 http://dx.doi.org/10.1201/9780203908518 
  22. [22] Samarskii A.A., Korzyuk V.I., Lemeshevsky S.V., Matus P.P., Difference schemes for the conjugation problem of hyperbolic and parabolic equations on moving grids, Dokl. Akad. Nauk, 1998, 361(3), 321–324 (in Russian) 
  23. [23] Samarskii A.A., Korzyuk V.I., Lemeshevsky S.V., Matus P.P., Finite-difference methods for problem of conjugation of hyperbolic and parabolic equations, Math. Models Methods Appl. Sci., 2000, 10(3), 361–377 http://dx.doi.org/10.1142/S0218202500000227 Zbl1012.65087
  24. [24] Samarskii A.A., Lazarov R.D., Makarov V.L., Difference Schemes for Differential Equations with Generalized Solutions, Vysshaya Shkola, Moscow, 1987 (in Russian) 
  25. [25] Wloka J., Partial Differential Equations, Cambridge University Press, Cambridge, 1987 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.